We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model (GP-LVM). The benefits and negative of the GP-LVM are complementary to the VAE, the former provides useful low-dimensional latent representations while the latter is able to handle large amounts of data and can use non-Gaussian likelihoods. Our inspiration for this paper is to marry these two approaches and reap the benefits of both.

Motivation np-VAE

- non-Gaussian likelihoods
- high interpretability
- explicit prior over structure via the choice of covariance function
- uncertainty estimation
- model complexity growing with the size of the data set

Our inspiration for this paper is to marry these two approaches and reap the benefits of both.

Abstract

We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model (GP-LVM). The benefits and negative of the GP-LVM are complementary to the VAE, the former provides useful low-dimensional latent representations while the latter is able to handle large amounts of data and can use non-Gaussian likelihoods. Our inspiration for this paper is to marry these two approaches and reap the benefits of both.

Motivation np-VAE

- non-Gaussian likelihoods
- high interpretability
- explicit prior over structure via the choice of covariance function
- uncertainty estimation
- model complexity growing with the size of the data set

Our inspiration for this paper is to marry these two approaches and reap the benefits of both.

Model

\[p(y) = \int \left(\prod_{i=1}^{N} p(x_i | y_i) \right) p(z | x)p(x)p(z | x|x) \]

Assumption

- Low-dimensional manifold in latent high-dimensional \(Z \) space
- Tested by: Embedding high-dimensional \(Z \) space positions recovered from the VAE in a low-dimensional space \(X \) via a GP-LVM (see initial results).

Variational Autoencoder

\[q(z | y_i) = \prod_{i=1}^{N} q(z_i | y_i), \]

\[\hat{L} = \frac{1}{N} \sum_{i=1}^{N} \log p(y_i | z_i) - \text{KL}(q(z | y_i) || p(z)) \]

Standard VAE formulation [Kingma and Welling (2014)]:

- unit Gaussian prior \(p(z) = N(0, I) \)
- trade-off between the embedded data residing at the same location in the latent space and the ability to reconstruct the data in the observed space.

Gaussian Process Latent Variable Model

A Gaussian Process can:

- be used to model functions nonparametrically
- be fully defined by a covariance function

\[p(y | x) = \int p(y | F)p(F | X)p(X) \sim N(0, k(X, X)) \]

\[p(y_i | x_i, y_i) = \int p(y_i | x_i, F)p(F | y_i, X)p(X) \sim N(0, k(X, X)) \]

\[\Sigma(x_i) = k(x_i, x_i) - k(x_i, X)k(X, X)^{-1}k(X, x_i) \]

Gaussian Process Latent Variable Model [Lawrence (2005)]:

\[p(y) = \int p(y | F)p(F | X)p(x)p(x) \sim N(0, k(X, X)) \]

References

Contact Information

Email: erik.bodin@bristol.ac.uk