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Abstract

We present a hierarchical image based facial model
which is driven from speech. It incorporates a novel mod-
elling and synthesis algorithm for learning and producing
coarticulated mouth animation We demonstrate using the
hierarchical model how animation of the entire face may be
created solely from animations of the mouth and how colour
may be reincorporated and reproduced compactly without
explicitly being modelled. We then consider and evaluate
methods of merging animations from several different facial
areas for delivery of output.

1. Introduction

We describe a hierarchical image-based facial anima-
tion system capable of producing coarticulted mouth ani-
mation given audio input alone. The system requires a short
video of a speaker to learn mouth/speech coarticulation and
once trained is fully automatic. We extend previous work
[3] where we produced mouth animations using a speech-
appearance based joint statistical model. The limitation of
this method was that coarticulation was not fully modelled,
often leading to degraded animation.

The model described in [3] divides the face hierarchi-
cally into sub-facial areas, each of which is animated sep-
arately from speech and merged in the final output using
warping methods. In this paper we introduce several ad-
vances where animation need only be produced for leaf
nodes which drive animations for their parents. We demon-
strate this by describing how realistic facial animation may
be produced solely from an animation of the mouth. We also
introduce a novel method of producing colour appearance
model based outputs using this framework.

Figure 1 shows an example hierarchical model. Each
node of the hierarchy contains a grey-level/luminance based
appearance model [2] of a specific facial area along with an
image hue and saturation Principle Components Analysis
(PCA) model. Leaf nodes in the hierarchy produce streams
of appearance parameters driven by speech input. Parent

nodes then use these appearance parameters to generate
their own model-specific parameters for grey level, hue and
saturation to yield a colour output. Producing image-based

Figure 1. Hierarchical overview.

facial animation using this framework has several advan-
tages in terms of modelling and compactness. Building ap-
pearance models of specific facial areas ensures that speci-
ficity and generalisation are improved more than if the en-
tire face is modelled. Compactness and complexity is also
improved since colour data (excluding luminiance) need
not be generated separately for animation nor explicitly in-
cluded in an appearance model.

2. Training and initialisation

For each node in our hierarchical model we require that
an appearance model of that facial area be built. We ini-
tially collect data for the entire face and extract sub-facial
data as the hierarchy requires. We first record a few min-
utes of video of a speaker reading a text or reciting a story
at 25fps with mono audio sampled at 32KHz. The subject
is recorded front-on with as little out of plane head move-
ment as possible. We record the subject’s voice using the
on camera microphone. Each image in the video corpus is
then annotated with landmarks highlighting key facial ar-
eas. We achieve this semi-automatically using the Down-
hill Simplex tracker described in [5]. Sub-facial appearance
models are then built by extracting image and landmark data
at specific facial areas. Once this data has been extracted we
follow the procedure for building appearance models as out-
lined in [2]. The only major differences in our technique are
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1) we convert our images into YIQ colour space and use lu-
minance data to build our appearance models, and 2) we
do not align our shape data with respect to scale. The rea-
son for the second point is that we regard scale in the mouth
as extra shape information. Figure 2 shows example anno-
tated images used for our model. After data collection for

Figure 2. Data initialisation.

a node/sub-facial area we represent our luminance/shape
appearance model along with the hue and saturation PCA
models respectively as

x = x̄ + PxW−1
x Qxc (1)

glum = ḡlum + PlumQlumc (2)

gi = ḡi + Pibi i = {hue, sat} (3)

where matrices P and Q represent eigenvectors, vectors ḡ
and x̄ represent model means, vectors x and g represent
shape and texture data, vectors b and c represent eigenvec-
tor weights, and matrix W−1

x is a shape-to-texture parame-
ter scale matrix. Note we use c to represent an appearance
parameter. For a fuller description of these models see [2].

2.1. Speech feature acquisition

To obtain robust and uncorrelated speech features we
follow common speech recognition techniques. Given a
raw audio track extracted from the captured training cor-
pus we perform Mel-Cepstral analysis using 20ms Ham-
ming windows and retain 12 coefficients[4]. We then per-
form Cepstral Mean Normalisation (CMN) on this set of
coefficients[4].

Given this set of coefficient vectors we construct a lin-
ear PCA speech model and project each vector through the
model, yielding new PCA weight vectors bS corresponding
to coefficient vectors. To account for the 50Hz speech sam-
pling rate and the 25Hz frame rate we linearly interpolate
the mouth appearance training set. This gives us one-to-one
correspondences between our speech and appearance train-
ing data with which to build our model.

3. Mouth Animation

In this section we present a means of generating mouth
animation at a leaf node. The process may also be reused

for other leaves or may be used stand-alone with any ap-
pearance model. The most important and difficult prob-
lem for mouth animation is that of coarticulation. Decid-
ing which mouth to output at time t given the current frame
of speech depends both on past and forthcoming observa-
tions of speech and visemes.

This process may be considered as Markovian and mod-
elled with a Hidden Markov Model(HMM)[7]. A HMM is
a doubly embedded stochastic process where one process is
hidden and only observed through a second one which pro-
duces a set of observations. The mouth appearance param-
eter training set is modelled using a standard gaussian out-
put HMM where the hidden process relates to selection of
different mouth groups (HMM states). What is required is
a means of deriving this hidden process from a speech in-
put. Brand’s solution is to build a second identical HMM ex-
cept with means and covariances calculated from the speech
training set[1]. The hidden state sequence of the appearance
HMM may then be calculated using the speech HMM, a
new speech input and the Viterbi algorithm.

3.1. Dual HMM Construction

Given a mouth appearance parameter training set
we build a HMM with V states and define it as
λA = (TA, BA,πA) where TA is our state transition
probability distribution, BA is our observation sym-
bol probability distribution and πA is our initial state
distribution. In construction of our HMM we also ob-
tain the matrix γ which tells us the probability of being
in state k at time t. Using the matrix γ we build a sec-
ond HMM λS = (TA, BA,πA) with means and covariances
calculated using the speech training parameter set. For de-
tails on this process refer to [7].

This dual-HMM framework conveniently allows us to
estimate a hidden state sequence in λA given any speech
observation using λS and the Viterbi algorithm [7]. How-
ever the problem of output still remains unsolved since we
still do not know which appearance parameter to display
given a probable hidden state sequence in λA. We begin by
rigidly allocating appearance parameters to states in λA by
calculating the Mahalanobis distance between each param-
eter and a state and assigning it to the closest. Using this
above process we are also able to simultaneously classify
speech parameters into states. We record these mappings
for use in Section 3.2.

Given a probable state sequence through λA the prob-
lem is now simplified to choosing an output parameter as-
sociated with a state at each time t.

3.2. Estimating output parameters

To solve the problem of choosing an appearance param-
eter to display for each state we proceed as follows. We de-
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fine a trellis data structure where each column represents the
appearance parameters allocated to state Qt and Q is the set
of states resulting from the Viterbi algorithm step. Note that
the length of each column may therefore vary and that each
parameter also corresponds to a speech parameter from the
training set (see Section 3.1). For each appearance parame-
ter in each column we assign an error which defines the cost
of observing that appearance parameter. Once we have de-
fined costs for each parameter we work backward through
the trellis and choose appearance parameters with the low-
est cost for each time t. Figure 3 illustrates an example of
an initial trellis structure. We calculate errors at t=1 using

Figure 3. Trellis data structure.

E(cj , Q1) = ((bj
S − b1

input)
T ΣS

Q1
(bj

S − b1
input))

j = 1, . . . , p (4)

where E(cj , Q1) is the error for appearance parameter cj

given state Q1, p is the number of appearance parameters in
column Q1, b1

input is the input speech parameter observed
at t=1, bj

S is the speech parameter associated with a corre-
sponding appearance parameter and ΣS

Q1
is the speech co-

variance matrix for state Q1.
To calculate the errors for parameters at t = 2, . . . , M,

where M is the length of the input speech observation we
use

E(cj , Qt) =

[
r∑

i=1

(ci
t−1 − cj

t )
T ΣA

Qt
(ci

t−1 − cj
t )

]
×

((bj
S − bt

input)
T ΣS

Qt
(bj

S − bt
input)) (5)

where j = 1, . . . , p and p is the number of cells in group Qt,
r is the number of cells in group Qt−1, ΣA

Qt
is the covari-

ance matrix in state Qt of the appearance HMM, cj
t is the

appearance parameter for cell j at time t and ci
t−1 is the ap-

pearance parameter for cell i at time t-1. Calculation for the
score in a cell is illustrated in Figure 4. The procedure es-
sentially allocates errors based on the distances between an
appearance parameter in a column at time t and parame-
ters at time t-1, while taking into account how close the in-
put speech matches the speech parameter for that appear-
ance parameter. Once errors are calculated for each appear-

Figure 4. Errors for t = 1, . . . , M.

ance parameter we travel backwards through the trellis and
choose the appearance parameter in each column with the
lowest error at time t. This gives an output trajectory of ap-
pearance parameters for mouth animation. Since we are es-
sentially reordering training set mouth parameters we also
retrieve hue and saturation training vectors for output. We
use these for colour synthesis in the following sections.

4. Trajectory post-processing

Although the trellis algorithm considers neighbor-
ing frame similarity it can not guarantee it, since it is also
influenced by speech distances. To ensure smooth ani-
mations we implement a weighted averaging filter using
confidence values. These are created for each time t by nor-
malising values in a trellis column, subtracting from 1
and renormalising giving a value between 0 and 1 indicat-
ing the level of confidence in an appearance parameter. By
using these values in a weighted mean window we sup-
press appearance parameters with low confidence values
and amplify parameters with high confidence.

5. Driving facial animation

Given a trajectory of leaf node appearance parameters
we may automatically generate parameters for its parents.
Formally we seek a facial appearance parameter at time
t which when synthesised contains a mouth identical to
the corresponding synthesised mouth appearance parame-
ter. Similarly we must also create appropriate hue and satu-
ration information for the face.

5.1. Downhill Simplex Search

The first method we consider is a search for the face
appearance parameter which minimises the function E =
glm−gpm using the Downhill Simplex Minimisation(DSM)
algorithm [6] where glm is the luminance generated from
the mouth appearance trajectory and gpm is the luminance
extracted from the mouth in the face texture. At each iter-
ation we synthesise the mouth texture from the mouth ap-
pearance trajectory at time t and warp it to the mouth in the
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face calculated from the current face appearance parame-
ter. The error E is then recalculated and a new face appear-
ance parameter is chosen using the DSM algorithm.

The algorithm terminates once E is below a threshold or
the maximum number of iterations is exceeded. We then re-
peat the process to find hue and saturation values for the
face using equation 3 and parameters bhue and bsat as op-
posed to face appearance parameters.

5.2. Parent model approximation

The second method we consider is perhaps the most ac-
curate and the simplest. Given a generated mouth texture we
warp it to over the mouth in the mean face texture. We then
substitute the generated mouth shape information into the
mouth information contained in the mean face shape. Us-
ing the face appearance model (equations 1 and 2) we then
estimate a facial appearance parameter. By using facial ap-
pearance space in this way we find an estimation of a new
appearance parameter which contains the merged face and
mouth data. Re-synthesis of a facial image using this pa-
rameter results in face image and shape data which accu-
rately contains the desired mouth information. As in Sec-
tion 5.1 we repeat the process for hue and saturation vectors
using equation 3.

6. Evaluation

We recorded a subject speaking for approximately
3 minutes, front-on and with minimal out-of-plane
head rotation. Using this data we built a hierarchi-
cal model with nodes for the face and the mouth. We
then recorded the speaker for another 3 minutes and used
this new audio to generate appearance trajectories for
the mouth leaf node. Example animations may be found
at http://www.cs.cf.ac.uk/user/D.P.Cosker/demos.html.

To compare the effectiveness of our reconstruction tech-
niques (Sections 5.1 and 5.2) we took 100 ground truth
face appearance parameters from the training set and gen-
erated two sets of new facial appearance parameters using
100 ground truth mouth appearance parameters. We eval-
uated both methods using a Mahalanobis Distance mea-
sure between ground and synthesised appearance parame-
ters. Over 100 frames we found the average Mahalanobis
distance for the DSM method to be 32.81 and for the parent
approximation method to be 31.15 with variances of 168.01
and 118.87 respectively. Subjectively we found the DSM
method to produce the poorest animations due to a tendency
for the search to result in local minimas.

Figure 5 shows an example animation trajectory using
our mouth animation algorithm with the parent approxima-
tion method. We judged the mouth animations to be strongly
lip-synched to input audio and video-realistic. One draw-

back however, occurs when the speech rate of the speaker
is too fast, resulting in missed mouth articulation for arti-
facts such as fricatives and plosives. We believe that this
may be improved using smaller training set analysis win-
dows (i.e. > 50Hz sampling).

Figure 5. Facial output example using parent
approximation.

7. Conclusions

We have presented a highly compact hierarchical frame-
work for producing realistic facial animation from speech.
The framework synthesises full facial animation using only
data from smaller facial areas such as the mouth to generate
colour animations for the whole face. We have compared
novel DSM and parent approximation methods for adding
sub-facial animations to full facial models. Using the par-
ent approximation method we have demonstrated how the
model may generate video-realistic output animations. In
future work we aim to further exploit the hierarchical frame
work to provide animations for more facial areas.
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