
Realtime Video Based Water Surface Approximation

Chuan Li, Martin Shaw, David Pickup, Darren Cosker, Phil Willis and Peter Hall

Department of Computer Science, University of Bath

Abstract

This paper describes an approach for automatically producing
convincing water surfaces from video data in real time. Fluids
simulation has long been studied in the Computer Graphics
literature, but the methods developed are expensive and require
input from highly trained artists. In contrast our method is
a low cost Computer Vision based solution which requires
only a single video as a source. Our output consists of an
animated mesh of the water surface captured together with
surface velocities and texture maps from the video data. As
an example of what can be done with this data, a modified
form of video textures is used to create naturalistic infinite
transition loops of the captured water surface. We demonstrate
our approach over a wide range of inputs, including quiescent
lakes, breaking sea waves, and waterfalls. All source video we
use are taken from a third-party publicly available database.

Keywords:Video Processing, Water Surface Modelling, Water
Surface Rendering

1 Introduction

Water simulation has been widely researched in the Computer
Graphics literature. The major focus has traditionally been on
better rendering quality and efficiency. Nowadays commercial
tools for water modelling in various degrees of detail are used
in a number of applications. These include photo-realistic
visual effects production and less realistic but more economical
effects for video games. However, it is typically the case that
well trained artists are needed to use these tools. The primary
motivation of the work we present here is to provide a low cost
automatic method to acquire and display models of ordinary
common-place bodies of water.

In this paper we address the problem of fluid acquisition
and modelling using a fully automatic video based approach.
The user only needs to shoot a video of a water surface
using a single video camera for our system to approximate its
geometry and its motion. The basic idea is that where water
flow converges the surface must rise, whereas where the flow
diverges the water falls. We show that a combination of shape
from shading and incompressible flow lead to state of the art
performance. Furthermore, the technique also works in real
time. The output model is qualitatively very similar to the input
video, which here we texture and loop infinitely — but other
graphics applications are no doubt possible. Figure 1 gives an

example of the input and output of our system.

In recent years, progress has been made in reconstructing
complex objects and scenes from images or videos, for
example: faces [5], human bodies [1] hair [13], trees [17] [16]
and fluids [2]. Among them, water brings unique challenges,
a solution to which is of great interest to many research areas
within Computer Graphics [19]. Unfortunately, Computer
Vision techniques are found to work less well for water than
most other cases. This is due to several major challenges:
a water surface generally lacks visually salient features; it
exhibits complex photometric properties; it exhibits complex
dynamics, including topological changes. These problems
yield extreme difficulties for tracking, and ground truth data
is difficult to acquire — even active acquisition systems such
as laser scanners used by engineers fail due to the complicated
reflection and refraction conditions.

This paper advances the current state of the art in image based
water reconstruction to work with a single input video captured
in ordinary outdoor conditions; more exactly where the water
is a suspension of particles such as mud. Compared to the
gamut of related work (Section 2), this makes our approach
unique. Moreover since water as a suspension is common
in the environment (as opposed, say, to perfectly clear water
with a regular texture on a flat bottom) our approach is useful
to ordinary users. The proposed method has the following
characteristics:

• It is designed to work with a single input video recorded
using an ordinary capture device. All of the example
videos we show were recorded by a consumer-level digital
video camera in an outdoor environment.

• It is practical, efficient and stable. It runs in realtime
because no complex optimization schemes are used.

• Experiments also show it performs consistently well
across different scenarios with fixed parameters.

• The output models can be used in many Graphics
applications. For example, they can be re-textured, played
forever, and viewed from different angles.

In the remainder of this paper we first overview relevant
background work (Section 2) before moving on to explain
our acquisition (Section 3) and provide examples of graphics
applications (Section 4). We provide results in Section 5
and also in supplementary material, further work is discussed
in Section 6. We conclude in Section 7 that our method

2011 Conference for Visual Media Production

978-0-7695-4621-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CVMP.2011.19

109

Figure 1: Our system takes a single input video (left) filmed
by a consumer level camera and produces a height field of
the water surface (middle) in realtime. The surface can
be textured, lopped forever, and viewed from different view
points in real time (right).

quickly produces realistic results at low cost to users, and has
the potential to be yet more versatile.

2 Related Work

Reconstructing water surface is of interest to a wide range
of groups: engineers, scientists and artists number amongst
them. Since we have opted for a Computer Vision based
approach to acquisition, this section confines itself to that area.
Computer Vision has used various types of physical properties
to reconstruct the water surface geometry, that depends on
assumptions about the conditions in which video data was
collected, as we now explain.

Refraction is one property that several researchers have
exploited. Murase [11] reconstructs a water surface from the
apparent motion of a refracted pattern. The distortion of an
underwater pattern is tracked by optical flow, from which the
water’s surface normal is calculated using a refraction model.
The water surface is then recovered by 2D integration of the
surface normals (needle map). Balschbach et al. [3] also use
a refraction approach, but based on a shape from shading
technique where multiple illuminations are used to better
determine surface gradients. Morris and Kutulakos [10] show
that refractive index is not indispensable by assuming light
is refracted only once. Their system reconstructs the water
surface by minimizing the refractive disparity. These refraction
based methods are generally called “shape from distortion”
and they work well for transparent water. The disadvantages
are they do not work with opaque liquids (more exactly, less
transparent) and require specially designed devices to capture
the distortion of a known pattern being located underneath the
surface of the water. None of these methods are suitable for
outdoor conditions, where water is a suspension and (to a first
approximation) opaque.

Shape from stereo techniques have been explored to reconstruct
liquids that are opaque. Wang et al. [19] dye water with white
paint and light patterns are projected onto its surface. A depth
field is first reconstructed by dense reconstruction and then
refined using physically-based constraints. This method shows
very accurate reconstructions of surface details. Ihrke et al. [8]
dissolve the chemical Fluorescein in the water and measures
the thickness of the water from the amplitude of the emitted

light. The visual hull of the water surface is then calculated
by utilizing weighted minimal surfaces using the thickness
measurements as constraints. Hilsenstein [6] reconstructs
water waves from thermographic image sequences acquired
from a pair of infrared cameras. As a viable approach, infrared
stereo reduces the problem associated with transparency,
specular reflection and lack of texture at visible wavelengths.
These techniques all require sophisticated equipment and
complex experimental setups.

Missing from the literature is a solution for reconstructing
water surfaces from a single video captured in an ordinary
outdoor environment. This paper demonstrates that shape from
shading combined with water incompressibility constrains
optical flow, and performs consistently well across different
types of such water surfaces.

3 Surface Acquisition

In this paper a height field h(x, y, t) is used to represent the
water surface at time t. Because this geometric representation
assigns only a single height value to each (x, y) position,
it rules out the realistic rendering of some effects such as
convincing splashes, breaking waves, droplets or sprays.
Nonetheless, we will show that a simple representation can
still produce sufficient approximations, even for complex
scenarios.

3.1 The Mass-Conservation Constraint

As stated above, the most important motivation of this work
is to provide a low cost way to acquire models of common-
place bodies of water. Our solution tracks the water filmed
by a consumer-level video camera and uses flow divergence to
compute the change in height δh(x, y, t) via the law of mass
conservation. This section explains how.

Suppose the flow at each point on the water surface is known
to be (u, v, w); later we will use optical flow to estimate it.
The law of mass-conservation in the Navier-Stokes equations
constrains the 3D divergence of the velocity to zero, which
leads to

∂w

∂z
= −

(
∂u

∂x
+

∂v

∂y

)
. (1)

This links the (spatial) gradient in the vertical velocity
component to the (spatial) gradient of the tangential velocity
components. If these tangential velocities are invariant to
height then ∂w/∂z is constant over z too. We set the boundary
condition (u, v, w) · n = 0 where n = (0, 0, 1) is normal to
the water bed; hence w = 0 at z = 0. Integration over z now
yields

w = h
∂w

∂z
= −h

(
∂u

∂x
+

∂v

∂y

)
. (2)

The vertical velocity can can also be calculated from the
material derivative of the surface height with respect to time:

w =
dh

dt
=

∂h

∂x
u+

∂h

∂y
v +

∂h

∂t
(3)

110

Here we simplify the fluid dynamic by not considering the
advection part ∂h

∂xu+
∂h
∂y v. Hence the Eulerian measurement of

the surface change is used as an approximation of the vertical
velocity w ≈ ∂h

∂t = h(x, y, t + 1) − h(x, y, t). The evolution
of the water surface can then be directly linked to horizontal
velocities via:

h(x, y, t+ 1)− h(x, y, t) = −h(x, y, t)(∂u
∂x

+
∂v

∂y
) (4)

Estimates of the horizontal flow (the divergence) can therefore
be used to estimate the change in height relative to the current
height. Equally, estimates of the height change can be used
to constrain horizontal velocities. The rest of this section first
demonstrates how shape from shading can be used to acquire a
prior for the water surface and then explains how to use such
a prior to improve the tracking of horizontal velocities. The
geometry and velocity of the final water surface model conform
to the mass conservation constraint.

3.2 Surface Estimation

The Horn-Shunk algorithm is one the most widely used optical
flow techniques [7]. They assume that the intensity of a point
remains constant over a short time interval. If a point at
location (x, y) at time t has intensity I(x, y, t) and moves with
velocity (u, v) then the energy function is given by

E(u, v) =

∫ ∫
(Ixu+Iyv+It)

2+α2(||∇u||2+||∇v||2)dxdy
(5)

in which Ix, Iy, It are the first partial derivatives of I , and α a
constant weighting factor. The velocity (u, v) that minimises
this energy term is taken to be the optical flow. However,
this method is not suitable for computing optical flow over
water because the regularising term imposes a constraint that
is not directly related to the physics of water. Others have
noted this and placed physical constraints on flow. Doshi
and Bors [4] use a robust kernel which adapts to the local
data geometry in the diffusion stage of the Navier-Stokes
formulation. The kernel ensures that smoothing occurs along
the structure of the motion field while maintaining the general
optical flow structure and the main optical flow features.
Sakaino [14] proposes a method to model abrupt image flow
change. Flow is modelled using a number of base waves
and their coefficients are found to match the input sequence.
Nakajima et al. [12] propose an energy function as a weighted
combination of conservation of intensity, conservation of mass,
and momentum equations.

All of the above offer some improvement over Horn and
Shunk’s general purpose formulation for the special case of
water. Yet all of them tacitly assume that all motion is parallel
to the viewing plane, that is all assume motion is confined
to two dimension. This assumption is clearly breached by a
moving water surface.

Our idea is to use shape from shading water surfaces as a prior
to constrain the tracking of horizontal velocities based on the
conservation of mass. We use the method described in [18]

to acquire an initial estimate of height h(x, y, t). Experiments
also show shape from shading can work for dynamic water with
very few adaptations (which surprised the authors of this paper,
but is nonetheless true).

Videos are low-pass filtered to remove noise, such as extreme
bright or dark points. Then for a video of length T frames
and a resolution of M by N 1, the average height of each
surface 1

MN

∑N
i=1

∑M
j=1 h(i, j, t) is rectified to the same level

1
TMN

∑T
k=1

∑N
i=1

∑M
j=1 h(i, j, k) to remove the affection of

global luminance change as

h′(x, y, t) = h(x, y, t)− 1

MN

N∑
i=1

M∑
j=1

h(i, j, t)

+
1

TMN

T∑
k=1

N∑
i=1

M∑
j=1

h(i, j, k). (6)

Although shape from shading has limitations, it captures the
surface geometry of different types of water and provides a
good prior to constraint the horizontal velocity tracking.

Given the shape from shading surfaces, the vertical velocity
w is approximated as their Eulerian derivatives with
respect to time. Its gradient along the z-direction ∂w

∂z is

consequently calculated as h(x,y,t+1)−h(x,y,t)
h(x,y,t) . The horizontal

velocities (u, v) are then whatever it takes to make the water
incompressible. The objective energy function is a weighted
combination of intensity-conservation, mass-conservation and
smoothness:

E=

∫ ∫
[(Ixu+Iyv+It)

2+α2(|∇u|2+|∇v|2)+β2(ux+vy +wz)
2]dxdy

(7)

(Ixu + Iyv + It)
2 and |∇u|2 + |∇v|2 are the intensity-

conservation term and smoothness terms from the Horn-
Schunck [7] optical flow. (ux + vy + wz)

2 is the mass-
conservation term that describes the 3D divergence of the
velocity. In practice, w is calculated by subtracting the current
shape from shading surface from its successor. Then wz is
calculated as w/h. The following Euler-Lagrangian equations
are used to minimize the objective function 7:

Ix(Ixu+ Iyv + It)− α2�u− β2(uxx + vxy + wxz) = 0 (8)

Iy(Ixu+ Iyv + It)− α2�v − β2(uxy + vyy + wyz) = 0 (9)

In practice�u,�v, uxx and vyy are approximated numerically
using finite differences. For example, the Laplacians are
approximated as�u = 1

4 (u(x− 1, y)+u(x+1, y)+u(x, y−
1) + u(x, y + 1))− u(x, y) and�v = 1

4 (v(x− 1, y) + v(x+
1, y) + v(x, y − 1) + v(x, y + 1)) − v(x, y). The Lagrange
multipliers α2 and β2 are fixed to 1000 across all scenes. The
solutions of equations 8 and 9 are found using the Gauss Seidel

1All videos in this paper have resolution of 352 by 288.

111

method. The resulting horizontal velocity (u, v) is then used
to calculate the final vertical velocity w and the change of the
height water surface is re-estimated using equation 4. Since
the system (Equations 8 and 9) is linear, it does not bring
extra complexity than Horn and Shunck and can be solved in
realtime.

3.3 Intermediate results

Figure 2 shows instantaneous surfaces computed using our
mass-conserved flow. The results suggest we can recover a
convincing surface even from dynamic water, such as breaking
waves and water falls. Strong shadows, reflections and foreign
bodies can produce artefacts — removing these is future work.
However, the convincing results for the majority of cases we
have tested demonstrate that simple shape from shading can be
an effective constraint. In particular, our mesh moves in time
whereas that computed by Horn-Shunk [7] is static, and that
computed using Nakajima et al. [12] barely moves. Our mesh
also includes an estimate of the instantaneous velocity (u, v, w)
at each point. Comparisons with prior art and examples of
velocity meshes are available in the supplementary material.

The next step is to show the mesh is of value to Computer
Graphics. We do so in this paper by texture mapping the mesh,
and creating naturalistic infinite transition loops of the captured
water surface.

4 Example Graphics Applications

There is a potentially unlimited variety of graphics applications
that require the rendering of water in some form or another,
e.g. VFX shots and water surfaces in video games. In order
to further the utility of the water capture method already
presented, we now describe an approach to texture map the
data and allow naturalistic infinite looping of the captured
sequences. In order to achieve the latter, we modify the Video
Textures algorithm [15] as explained below.

4.1 Texture Mapping

The general approach we take for texture mapping the captured
water surfaces is to apply the video frames to the corresponding
surface meshes. We construct a surface mesh from the input
height field using triangles, and then determine what colour
we will make the surface mesh. In our texture mapping
application this corresponds to identifying texture coordinates
in the corresponding video frame. For each point in the surface
mesh we allocate a texture coordinate, which dictates where
that particular pixel’s colour comes from.

At this point, we backward map from points on the 3D
surface to the texture using UV texture coordinates. Bilinear
interpolation filtering is used to colour points on the surface
which do not lie exactly on a texture coordinate. This achieves
a better result when our texture is inspected closely. In addition,
we use mip-mapping [20] to allow for rapid zoom-in and
zoom-out.

4.2 Video Textures

In this section we describe our approach for making a water
sequence loop infinitely in a naturalistic way. This depends
on analysing the component frames of a video to produce the
correct looping effect. Our approach is an extension of that
originally presented by Schödl’s [15]. As we explain, we
cannot directly use this algorithm as the sequences we use are
short and water is quasi-periodic (especially turbulent water).

The first step in our technique is to perform a pairwise
comparison between each frame in the source video to
compute a measure of similarity. Like Schödl, we chose to
compare the pixel colours in the frames by using the Euclidean
norm. Rather than compute this on each colour channel we
chose to use the gray level representation of the images. The
Euclidean norm d between frame a and frame b is defined as

d(a, b) =

(
N∑

k=1

(ak − bk)
2

)1/2

, (10)

in which k indexes a pixel. We use this to build up a matrix

Dij = ||Ii − Ij || = d(Ii, Ij), (11)

which contains all the computed similarities between each pair
of frames in the input video, where i and j range over all of the
frames in the input video. We normalise D such that the sum of
values is unit, that is

∑
ij Dij = 1, as this makes computations

more convenient later.

The next step is to consider the probabilities of transition
from one frame to the next. Normally this would be the
successive frame in the sequence. However, in order to create
a convincing infinite sequence from a finite video we must
consider transitions to other frames. If we are at frame i, we
may wish to transition to some frame j whenever the distance,
D, between i + 1 and j is small. Following Schödl [15], we
assume the transition probability is Gaussian distributed with
D the (squared) Mahalanobis distance, thus

Pij = exp

(−Di+1,j

σ

)
(12)

is the transition probability from from frame i to frame j. We
use this to make the choice to the next transition. Here, σ is
a scalar which controls the degree to which similar frames can
be jumped to: a small value means only very similar frames are
likely, and large value yields more-or-less random jumps. We
set σ = 1.2× 10−4 for all video sequences.

The matrix Pij is a zeroth-order Markov chain and therefore
ignores all dynamic data. As Schödl [15] point out this can
have a significant impact. For example, suppose we wish to
create a video texture from a pendulum, swinging back and
forth. There will be a point as the pendulum ascends which
is kinematically identical to when it descends, but dynamically
its mirror. Transitioning at this point can produce a strange
animation where the pendulum’s arm appears to abruptly
change direction without cause.

112

Figure 2: Ten example videos and their shape from shading surface reconstructions. The reconstructed surfaces are rendered
from a different view point to reveal the 3D information. Top row, left to right: ‘breezey ripples’, ‘quiescent’, ‘waves’,
‘boiling’; bottom row left to right: ‘water fall’, ‘rain’, ‘fountain’, ‘reflection’. Notice the ‘reflection’ surface is an example of
the failure cases.

Our algorithm produces optical flow vectors, which could be
used to preserve dynamics. Schödl et al. advise against this
however, stating that flow computations can be quite brittle.
They suggest a simpler alternative – in order for one frame to
be classified as similar to another frame temporally adjacent
frames within a weighted window must also be similar. We
follow their advice and match a subsequence of frames rather
than individual frames. We compute this, following Schödl et
al. [15], as follows:

D′ =

m−1∑
k=−m

wkDi+k,j+k (13)

We use m = 2 in our implementation, which corresponds to a
4 tap filter, and we set w to be binomial coefficients. We can
then convert D′ to probabilities, as before.

Knowing that frame i is similar to frame j is not enough for
video textures — consider the pendulum example which was
discussed previously. Again following Schödl et al. we reduce
the probability of a sudden reversal in the direction an object
moves by matching frames that neighbour both i and j, in effect
matching a mini-sequence of 3 or so frames. However, even
this is not sufficient in our case: we found that standard video
textures always produces a visible discontinuity in the clips we

used — the supplementary material contains some examples.

It is true that Schödl et al. provide examples of video
texture using water, so some explanation is required as to
why it fails in our cases. Our explanation is this: we use
short video clips that are close to the water surface and we
reconstruct three dimensional surfaces, these conditions act to
highlight visual discontinuities. Schödl et al., on the other
hand, use clips of much longer length and in which the water
is viewed from a greater distance, they make no effort to
recover three dimensional information; all of which act to
suppress visual glitches. Kwatra [9] point to the same problem
as we do (although they do not reconstruct surfaces). They
solve the problem using graph cuts, we have developed a
much simpler technique but one which nonetheless produces
acceptable visual results.

4.3 Video Texture transitions for water

There are two ways our work deviates from standard video
textures, both of which are rooted in the chaotic nature of water,
including the relatively calm examples we have. Consider the
current frame to be frame i and the target frame to be j. The
two departures are:

113

1. we re-shape the transition probability Pij using a shaping
function so that j is not close to i; and

2. we transit from i to frame j using a sliding interpolation
akin to cross-fade.

The rationale behind the first of these is that the transition
probabilities Pij decay very rapidly as frame j moves away
in time from frame i. At a sufficient distance the probabilities
do exhibit oscillations as expected, but even the peak values are
much lower than the probabilities close to frame i. This has an
important effect: if we were to pick the target frame j under
the distribution Pij as defined in Equation (even if D′ replaces
D), then we tend to end up cycling over just a few frames of
video. To solve this we could increase σ, but that leads to a
nearly flat distribution which is not wanted; we therefore re-
shape Pij . This leads directly to the rationale behind the second
departure: the target frame j from frame i differs so much from
i that a simple transition as advocated by Schödl et al. results in
the visible glitches mentioned above. We discuss the shaping
function first.

Our goal is to find a pair of frames in the video which can
provide us with a subtle transition from frame i to frame j.
However, as explained frame j should be distant from i if
we are not to loop over just a few frames. We choose a
shaping function that rises away from zero as frame j become
more temporally distant from i and remains at unity once j is
sufficiently distant. Any sigmoid function would do for this,
we chose the error function which is defined by

erf (x) =
2√
π

∫ x

0

e−t2dt. (14)

In practice, the shaping function we use, q(j, i), has a ‘flat
bottom’, and is defined by

qj,i =

⎧⎨
⎩

0 if j ∈ [i − μ, i+ μ]
erf (|v1|λ) if j > i+ μ
erf (|v2|λ) if j > i− μ

(15)

in which v1 = j − (i + μ) and v2 = j − (i − μ) are the
distances of frame j from the upper and lower bounds of the
closed interval [i− μ, i+ μ] in which the transition probability
is clamped to zero. The λ is a constant that controls the rate at
which the function climbs from zero to unity. We set λ = 1/8,
and μ equivalent to two seconds of video — so μ = 48 at 24
frames per second. We then re-compute the transition matrix
so that

P ′ij = Pijqij . (16)

We now address the problem of transitioning between one
part of the video and another. First we match frame i + 1
to some frame j, using the transition matrix in 16. Were
we to follow standard video textures we would suppose the
current frame is i and its the successor, frame i + 1, to some
frame j; then continue the video from frame j. However, as
mentioned above, standard video textures does not work with

our video clips, because even relatively still water is too chaotic
so there is always a noticeable discontinuity. We therefore
take a temporal window of width K and blend the sequence
I(i − 1 − K) to I(i + 1 + K) with the sequence I(j − K)
to I(j + K). The blending function is a linear slide over
the sequences using a pseudo-index k; the kth output frame
is given by

I ′(k) = (1 − w(k))I(i + 1 + k) + w(k)I(j + k). (17)

in which w(k) = (k +K)/2K , for k = −K,−K + 1, ...,K .
Examples showing the result of this approach may be found in
the supplementary material.

Since we are now using a blended sequence rather than
replacing frames we must ensure the jump does not require
a sequence that exceeds the video boundary. For example,
jumping to frame one would not be allowed because that would
require us to access frames before frame one. We overcomes
this by clamping the shaping function to 0 at the start and end
of the video.

5 Results and Discussion

We show the results of our technique using a number of
dynamic textures from the DynTex database 2. We partition
our results into surface acquisition and surface rendering. Each
of these is further partitioned into failure cases of prior art, our
success cases, and our failure cases that point to future work.

Our method only uses a linear optimization for model fitting
(Equations 8 and 9) so there is no significant increase of
computational complexity when compared to the traditional
optical flow algorithms such as [7]. All the outdoor videos
used in this paper have a resolution of 352 by 288. For such a
resolution, the shape from shading algorithm [21] is also able to
run in realtime for the initial surface acquisition. Hence overall
our method is able to produce the output model in realtime.
There is a small overhead for computing the similarity matrix
for video texture. However, this only needs to be done once for
each video. Once the similarity matrix has been computed, the
rendering is in realtime, as shown in the demo videos.

Ideally the captured model should be quantitatively evaluated.
In practice we realized it is difficult to get the ground truth
data for water surfaces. Even active acquisition systems
such as laser scanners will fail due to the over complicated
reflection and refraction conditions. Authors of [19] project
random patterns to water that has been dyed with white paint
and use stereo reconstruction to capture its surface in an
indoor environment. So far as we know this is arguably the
best available ground truth approximation for water surface.
However, it is not possible to use this method for outdoor
scenes as large scale water can not be dyed. Hence we leave
the ground truth water surface capture as an interesting future
avenue and focus on the qualitative evaluation in this paper.

Acquisition results have already been briefly discussed in

2http://projects.cwi.nl/dyntex/

114

Subsection 3.3. As mentioned there, supplementary material
provides evidence that current optical flow algoirthms,
including those designed specifically for water, fail to produce
convincing moving surfaces. It also shows we produce flow
vectors that appear by qualitative inspection to be of higher
quality than those produced by prior art. Returning to Figure
2 we see that the shape from shading constraint is useful in
many cases, but fails where there a strong cast shadow, a
foreign body who’s intensity colour contrasts greatly with the
surrounding water, or (as shown) reflections. Overcoming this
limitation is future work.

Figure 3 shows single frames from our rendering results.
The ‘flotsam’ example shows that shape from shading can be
robust to foreign objects, provides they offer little illumination
contrast with the water surface. The ‘froth’ example shows
a highly reflective surface in which the optical properties are
far from the diffuse assumptions made for shape from shading.
In this case the surface obtained in not entirely veridical but
is qualitatively convincing. Figure 4 shows examples of
failure cases. Example ‘break’ highlights an area showing a
peaking wave, just about to break — however in the surface
we see a trough. We conclude the best surfaces tend to be
produced when the perspective of the camera is almost directly
above the water surface, which is in line with our assumptions
linking vertical velocity to tangential velocity. The ‘duck’
example shows that a dark foreign body leads to a trough in the
surface; this is more obvious with the ‘shadow’ example. The
supplementary material contains the texture mapped video all
of which are rendered as an infinite loop via video textures. It
shows the visible discontinuities using standard video textures
that motivated our modification, and video of our successes
corresponding to Figure 3, further successes and failures cases
(which, again, can be traced back to our use of shape from
shading).

6 Further Work

There are several future directions for this work. The shape
from shading issue is one obvious avenue to make acquisition
operate more robustly over a wide gamut of inputs. We may
also attend to details of the surface fitting procedure so that
sharper features are better preserved.

In terms of rendering, this paper has demonstrated feasibility
but there is much more that could be done. For example,
there is the issue of scene lighting from alternate perspectives.
This is a potentially costly computation that our technique is
designed to avoid. However, given our results indicate that
the surface appears natural unless the view is varied too far
from the original source — an observation that might be used
to build a fast solution.

Secondly, we could improve the visual quality of our rendered
output with the use of particle systems. We have observed that
when water gets sufficiently turbulent, we see entities of water
shoot through the air. This is most noticeable in breaking wave
situations. We could look for these instances through optical

flow vectors computed from the source video. We could then
fire particles to emulate this behaviour in our water surfaces.

Our technique only considers small, rectangular patches of
water. In many applications, we desire the shape and size of
our water surface to be arbitrary. Texture synthesis techniques
[9] would allow us to enlarge the size of our source video and
hence we could produce such water surfaces.

Although our method for interpolating between transitions in
video textures produces acceptable results on a wide range
of test cases, the graph cut technique employed by Kwatra et
al. [9] has been shown to be more robust at the cost of more
complexity. An extension to this project could be to implement
a graph cut technique like this to transition between frames, in
place of our interpolation method. However, this would not
help us in the challenging cases when attempting to produce
a video loop within a breaking wave situation. Kwatra et al.
show an example of their technique on such a case in their
demonstration video3 and find results similar to those which
our technique achieved. Unfortunately, to our knowledge, there
is no solution to seamlessly loop videos in these situations.

Finally, we emphasise our graphics applications are intended
to be examples of what is possible rather than definitive of
what can be done. We can imagine applications based on ray
tracing, particle systems, and even non-photorealistic rendering
in cases where a cartoon like feel is important (for example).

7 Conclusion

This paper studied the problem of video-based water
reconstruction for a single input video that is captured in
ordinary outdoor conditions. In this case the prior art based
on refraction and (stereo) reflection based reconstruction
techniques are impractical. We have demonstrated the
robustness of the method using many different types of
water. The advantages of the proposed method are: 1) it
works fully automatically and requires only basic input
resources; 2) it is very efficient and can run in realtime; 3)
The model can be textured, lighted and looped for interesting
graphics applications. Furthermore, our approach requires no
specialist hardware: we are able to produce these water surface
animations from standard quality digital cameras. As expected
with any depth estimation technique, the quality of the output
increases with the resolution and lens quality of the camera.

One important discovery is the capability of shape from
shading as a constraint to recover different water surfaces
of this kind. Consistent performance is demonstrated by
experimenting on a wide range of scenes.

There are many interesting future avenues for this work, both
in surface acquisition and in rendering.

3http://www.cc.gatech.edu/cpl/projects/graphcuttextures/

115

Figure 3: Images from several challenging water sequences along with their corresponding reconstructed texture mapped
surfaces. Top row, left to right: ‘breezy ripples’, ‘quiescent’, ‘waves’, ‘waves too’. Bottom row, left to right: ‘water fall’,
‘fountain’, ’flotsam’, ‘froth’.

Figure 4: Several pairs of video frames and their corresponding surface meshes demonstrating failure cases. Left to right
‘break’, ‘duck’, ‘shadow’. See Figure 2 for a reflection example (not texture mapped).

116

References

[1] E. D. Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H. Seidel,
and S. Thrun. Performance capture from sparse multi-
view video. Proceedings of ACM SIGGRAPH, 27(3):1–
10, 2008.

[2] B. Atcheson, I. Ihrke, W. Heidrich, A. Tevs, D. Bradley,
M. Magnor, and H. Seidel. Time-resolved 3d capture
of non-stationary gas flows. Proceedings of ACM
SIGGRAPH Asia, 27(5):1–9, 2008.

[3] G. Balschbach, J. Klinke, and B. Jähne. Multichannel
shape from shading techniques for moving specular
surfaces. In Proceedings of the European Conference on
Computer Vision, pages 170–184, 1998.

[4] A. Doshi and A.G. Bors. Navier-stokes formulation for
modelling turbulent optical ow. In British Machine Vision
Conference, page 110, 2007.

[5] A. Ghosh, T. Hawkins, P. Peers, S. Frederiksen, and
P. Debevec. Practical modeling and acquisition of layered
facial reflectance. Proceedings of ACM SIGGRAPH Asia,
27(5):1–10, 2008.

[6] V. Hilsenstein. Surface reconstruction of water waves
using thermographic stereo imaging. In Image and Vision
Computing New Zealand, pages 102–107, 2005.

[7] B. K. P. Horn and B. G. Schunck. Determing optical
flow. In Artificial Intelligence, volume 17, pages 185–
203, 1981.

[8] I. Ihrke, B. Goldluecke, and M. Magnor. Reconstructing
the geometry of flowing water. In Proceedings of the
International Conference on Computer Vision, pages
1055–1060, 2005.

[9] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and
Aaron Bobick. Graphcut textures: image and video
synthesis using graph cuts. ACM Trans. Graph., 22:277–
286, July 2003.

[10] N. J. Morris and K. N. Kutulakos. Dynamic refraction
stereo. In Proceedings of the International Conference
on Computer Vision, pages 1573–1580, 2005.

[11] H. Murase. Surface shape reconstruction of a
nonrigid transport object using refraction and motion.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(10):1045–1052, 1992.

[12] Y. Nakajima, H. Inomata, H. Nogawa, Y. Sato, S. Tamura,
K. Okazaki, and S. Torii. Physics-based flow estimation
of fluids. In Pattern Recgonition, volume 36, pages 1203–
1212, May 2003.

[13] S. Paris, W. Chang, O. I. Kozhushnyan., W. Jarosz,
W. Matusik, M. Zwicker, and F. Durand. Hair
photobooth: geometric and photometric acquisition of
real hairstyles. In Proceedings of ACM SIGGRAPH,
pages 1–9, New York, NY, USA, 2008. ACM.

[14] H. Sakaino. Motion estimation method based on physical
properties of waves. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008.

[15] Arno Schödl, Richard Szeliski, David H. Salesin, and
Irfan Essa. Video textures. In Proceedings of the 27th
annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’00, pages 489–498, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[16] P. Tan, T. Fang, J. X. Xiao, P. Zhao, and L. Quan. Single
image tree modeling. Proceedings of ACM SIGGRAPH
Asia, 27(5):1–7, 2008.

[17] P. Tan, G. Zeng, J. D. Wang, S. B. Kang, and L. Quan.
Image-based tree modeling. In Proceedings of ACM
SIGGRAPH, page 87, New York, NY, USA, 2007. ACM.

[18] P. Tsai and M. Shah. Shape from shading using linear
approximation. Image and Vision Computing, 12:487–
498, 1994.

[19] H. M. Wang, M. Liao, Q. Zhang, R. G. Yang, and G. Turk.
Physically guided liquid surface modeling from videos.
In Proceedings of ACM SIGGRAPH, pages 1–11, 2009.

[20] Lance Williams. Pyramidal parametrics. SIGGRAPH
Comput. Graph., 17:1–11, July 1983.

[21] R. Zhang, P. Tsai, J. E. Cryer, and M. Shah. Shape
from shading: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21:690–706, 1999.

117

