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Abstract

Estimating changes in camera parameters, such as motion, focal length and exposure time over a single frame or sequence
of frames is an integral part of many computer vision applications. Rapid changes in these parameters often cause motion
blur to be present in an image, which can make traditional methods of feature identification and tracking di�cult. In
this work we describe a method for tracking changes in two camera intrinsic parameters - shutter angle and scale changes
brought about by changes in focal length. We also provide a method for estimating the expected accuracy of the results
obtained using these methods and evaluate how the technique performs on images with a low depth of field, and therefore
likely to contain blur other than that brought about by motion.

1. Introduction1

Estimating motion of a camera system, both in terms2

of extrinsic (camera movement relative to the world co-3

ordinate system) and intrinsic camera changes (such as4

changes in focal length) is an important aspect of many5

computer vision applications. Accurate estimation of these6

changes throughout a film sequence is an essential part7

of the Visual E↵ects (VFX) process, as without this in-8

formation, computer generated assets, such as characters,9

scenery and e↵ects, cannot be applied convincingly to live-10

action footage. Often, in order to determine changes in the11

camera parameters, it is necessary to track individual fea-12

ture points over two or more frames after filming has taken13

place, or use additional camera mounted hardware such as14

a motion capture rig, inertial measurement devices, and15

other devices for tracking physical changes to the lens pa-16

rameters. Commonly, the process of determining changes17

in camera parameters after filming is referred to as match-18

moving. This is a process that uses structure-from-motion19

computer vision techniques to estimate both camera mo-20

tion and 3D scene structure using corresponding feature21

points over multiple frames [13, p. 207]. This process22

can often be time-consuming, and require the input of a23

skilled operator in order to produce an accurate camera24

track from even automatically detected and matched fea-25

ture points. In the case of using additional hardware, this26

presents challenges such as gaining acceptance on set for27

installation, and the additional expense of equipment and28

operation. There are also often many situations where29

such equipment would be impractical - such as outdoors30
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or at sea, due to the reliance on additional infrastructure.31

However, recent developments in electromechanical sen-32

sors has allowed for the manufacture of gyroscopes and33

accelerometers that are both low cost and small. These34

devices are now starting to be included within cameras35

and can easily be mounted to them in order to provide in-36

formation about their motion during filming. Examples of37

applications of such camera mounted devices range from38

assisting determining scene geometry [11] to correcting for39

distortions introduced by motion and camera rolling shut-40

ter [5]. One of the most significant challenges with us-41

ing inertial measurement sensors to measure motion of the42

camera is that only changes in acceleration or rotational43

velocity are recorded. This can lead to significant errors in44

determining absolute position by integrating this data [12],45

and as such are rarely suitable for tracking camera motion46

when used alone. Devices which track physical changes in47

lens parameters are now commonly used in production en-48

vironments and have gained acceptance across the indus-49

try - however they must be accurately synchronised to the50

video captured by the camera. Whilst this is now a quick51

process, occasionally it may not be completed correctly (if52

at all) for each shot, and manual alignment of the data in53

post-production is a time consuming and hence expensive54

task.55

Accurate feature tracking is a reliable method of de-56

termining accurate camera motion estimations, and is an57

active area of research. However, there are several cases58

where it is di�cult to get an accurate track, most no-59

ticeably when there is a fast unpredictable motion of the60

camera, which also often leads to a considerable amount61

of motion blur being present in a frame, making features62

undetectable. Another common method for determining63

camera movements is to make use of a method known as64

‘Optical Flow’ across an image. In this process, a dense65

correspondence for each pixel across two frames is calcu-66
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lated. Assuming that there are a su�cient number of sta-67

tionary objects in the scene, the camera’s movement can68

be calculated using this correspondence information. Sim-69

ilarly to automatic feature detection and matching, the70

process of calculating the optical flow across frames also71

su↵ers from degradation in the presence of large quantities72

of motion blur.73

In [17], the authors present a method for determin-74

ing dense optical flow in the presence of spatially-varying75

motion blur. This method produces good results, how-76

ever calculating optical flow over an entire image can be77

a computationally expensive process. In [6], the authors78

present a method of determining in real-time and using a79

single motion-blurred frame, an estimate for camera ro-80

tation - using characteristics of the motion blur directly,81

and without selecting or matching any features from the82

image.83

In our previous work [1], we used motion blur induced84

onto an image by changes in focal length and camera ro-85

tation to track changes in two camera intrinsic parameters86

- namely focal length and shutter angle. We used accu-87

rate hardware tracking of changes in camera parameters88

(the focal length change of a lens and camera rotation) to89

gather ground truth datasets and validate our algorithms.90

We also demonstrated how, in a situation where unsyn-91

chronised data from certain sensors was available along-92

side blurred footage, the blur patterns from frames in this93

footage could be used to accurately synchronise the exter-94

nal data with camera frames. One of the main limitations95

of the approach presented in [1] is that in order for an accu-96

rate estimate of focal length to be produced, there must be97

a su�cient amount of motion-induced blur present in the98

frame, along with su�cient visual texture (in this case,99

sharp edges). In the following sections, we give an ex-100

panded description of our method as presented in [1] for101

determining shutter angle and scale change brought about102

by focal length change. In addition to this, we present103

an extension to this method for validating the accuracy of104

such results across two new datasets in di↵ering conditions.105

We also investigate the e↵ects of a shallow depth-of field106

(and hence images likely to contain a significant amount107

of blur irrespective of motion) on both our method.108

2. Background109

Our main motivation for this work is to improve the110

process of ‘Matchmoving’ for use in Visual E↵ects. In par-111

ticular, we are interested in accurately estimating changes112

in camera parameters automatically and from scenes that113

would cause traditional structure from motion techniques114

based upon feature detection and matching to fail. Motion115

blur is often present in footage, and it is not uncommon for116

it to be considered a desirable artistic e↵ect by directors117

in order to convey a sense of fast movement to the viewer118

[4]. This can often present challenges in determining an119

accurate camera track [13, pp140-143], as many current120

techniques for feature identification and matching rely on121

there being sharp corners or changes in image intensity122

being visible. Motion blur severely reduces the occurrence123

of these in an image. However, recent work has looked124

at using the characteristics of induced motion blur alone125

to determine parameters of a scene in order to avoid this126

limitation.127

Using Motion blur directly to determine parameters128

of a scene is an area of current computer vision research.129

[9] presents a method of determining speed of a moving130

vehicle from a blurred image, whilst then using this infor-131

mation to de-blur the resulting image. Other methods,132

such as the one presented by Rekleitis [14] use the di-133

rection and magnitude of motion blur in the process of134

estimating optical flow in an image. Later work, in [17],135

parameterises each frame as a function of both pixel move-136

ment and motion-blur. In [17], the authors determine the137

derivative of the blurred frame with respect to both the138

motion and the blur, where the blur itself is a function139

of motion. Furthermore, if the exposure time is known as140

a fraction of the frame (shutter angle), the result can be141

further optimised. Recent work in [7] makes use of data142

captured from a 3D pose and position tracker attached to143

the camera to aid in the calculation of optical flow in im-144

ages a↵ected by motion blur. As the level of motion blur in145

an image is typically directly related to the exposure time146

of the frame, [10] and [16] use a method with a hybrid147

camera capturing both high and low frame-rate images of148

the same scene to correct images exhibiting motion blur.149

Presented by Klein and Drummond in [6] is a method150

for determining the rotation of a camera during a single-151

frame exposure resulting in motion blur. In this work,152

the axis of rotation is derived by selecting a point through153

which the most normals to the edgels at a set of ‘edgel’154

(points along an edge) points coincide. This algorithm155

builds on the observation that areas of motion blur will156

typically form edges in the image. Figure 1 shows a syn-157

thetic animation that has undergone motion blur whilst158

the virtual camera has been rotated, and the results of159

this image having undergone Canny edge detection.160

In the case of the scene in figure 1, the algorithm de-161

scribed in [6] will estimate the centre of rotation to be at162

the centre of the image plane - the Z axis. In order to163

handle rotations around the X and Y axis, the normal164

line to the edge at each edgel site is expressed as the inter-165

section of the image plane with a plane passing through166

the origin and and edgel site. Once the centre for rotation167

has been accurately determined using RANSAC (and opti-168

mised using a Levenberg-Marquardt based algorithm), the169

magnitude of rotation can be determined from analysing170

the blur along its direction, with the intensity of pixels in171

the image being sampled in concentric circles centred at172

the estimated axis of rotation. In [6], rotation magnitude173

is estimated under the assumption that the blur length174

cannot exceed the shortest intensity ramp produced by an175

intensity step in the scene (i.e., the least blurred feature).176

Under the further assumption that the largest intensity177

step in each scene will span approximately the same in-178
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Original image Image with motion blur Image with motion blur
from Rotation from change in Focal Length

Figure 1: Images Blurred from Camera Rotation and Focal Length Changes with Resulting Canny Edge Detection

tensity increase, the gradient of the steepest ramp to span179

this increase will therefore be inversely proportional to the180

length of the motion blur, and thus the magnitude of ro-181

tation from the camera. Their work highlights a number182

of important limitations in using motion blur to determine183

changes in camera parameters, most notably that from a184

single frame alone, it is not possible to determine the di-185

rection (or sign) of rotation. For this reason, it is only186

possible to compare the results of this algorithm with nor-187

malised values of rotation from a rate-gyroscope or other188

method for determining ground truth.189

2.1. Intrinsic Parameters190

The intrinsic parameters we consider in this work are191

focal length and shutter angle.192

If the focal length of a lens were to change whilst the193

sensor or film is exposed, it could be expected that the194

image will experience motion blur in a similar fashion to195

those described in the previous section due to changes in196

the field of view. An example of such an image is also197

shown in Fig. 1. Although the entire image has been198

scaled by a single value, it is apparent that di↵erent parts199

of the image are blurred by di↵ering amounts, specifically200

- towards the centre of the image edges will still appear201

sharper, despite being scaled, than towards the outside. It202

is also clear that the ‘edges’ introduced by this blur con-203

verge towards the centre of the image, in a similar fashion204

to a translation of the camera originating from the centre205

of the image.206

When a frame is captured, the image sensor, or film,207

is exposed for a short amount of time. Often, this amount208

of time is known and controlled by the camera operator209

- however there are occasions where this would be an un-210

known value, such as in cameras with an automatically211

controlled exposure. Fig. 2 shows two extracts from two212

video sequences of a ball falling under gravity. The left213

hand panel is a frame from a sequence shot with an ex-214

posure time of 1/500th of a second, whilst the right hand215

panel shows a similar scene captured with an exposure216

time of 1/100th of a second. In both frames, the ball falls217

Shutter Angle 18� Shutter Angle 90�

Figure 2: Illustration of Shutter Angle and Motion Blur (25fps)

at an identical speed, and in both cases the frame rate218

was set to 25 frames per second. Therefore, the left frame219

would be exposed for 1
500÷

1
25 = 0.05 of the frame time and220

the right hand frame for 1
100 ÷ 1

25 = 0.25. It can be seen221

from Fig. 2, the frame with the longer exposure time as222

a fraction of the frame exhibits the largest amount of mo-223

tion blur. Historically, this fraction of time for which the224

frame is exposed is determined by the shutter angle. This225

is so called as in cameras with mechanical shutters con-226

sisting of a rotating disk with an adjustable sector with227

which to expose the film, the shutter angle referred to228

the angle of opening of this sector. In the example from229

Fig. 2, the shutter angle of the second frame would be230

360� ⇥ 0.25 = 90�, and a frame for which the exposure231

time is half the frame time would be 180�. Throughout232

this work, for simplicity, we refer to the values for shutter233

angles as fractions of the frame time.234

3. Method235

3.1. Measuring Focal Length Change from a Single Frame236

237

In the case of a single motion-blurred frame undergoing238

rotation, we use Klein and Drummond‘s original method239

to calculate the rotation, R around a 3D axis for that240

frame. In our work, we focus on scale change in the 2D241

image coordinate system. We also extend this method to242

determine a scale change brought about by a change in243

focal length without other motion. In our work, we focus244
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on a scale change taking place in the 2D image plane, with245

the principal point of the lens being at the centre of the246

image.247

As shown in Fig. 1, the change in focal length (assum-
ing the camera is not rotating or translating) adds motion
blur to the image in a fashion similar to a translation to-
wards the principal point of the image plane. Unlike the
method used by Klein & Drummond to estimate for ro-
tation, there is no need to determine the centre of the
transformation as we can assume that the direction of the
blur will always be towards the principal point of the im-
age plane. Therefore, in order to determine the magnitude
of blur, the intensity I of the image along several radial
lines L, is sampled from the edge of the image inwards
(Fig 3). The number of radial lines depends on the size
of the image, and are sampled starting at locations on the
edges of the image spaced 10 pixels apart. Therefore, for
a 640 ⇥ 480 image, there would be 2 ⇥ 64 + 2 ⇥ 48 lines
sampled. This profile is then searched for the first occur-
rence of an intensity step change greater than a threshold
value - and the length of this change (and image position
of the start and end) is recorded. In a similar fasion to
the authors of [6], we choose a threshold value in order
to avoid under-estimating the length of the blur, and only
consider ramps which span a large intensity change (over
50 grayscale levels) in order to detect large isolated in-
tensity steps (representing edges) in the image. The first
occurrence of the step-change is selected because edges are
expected to be less blurred towards the centre of the image,
and hence the shortest intensity ramp will always corre-
spond to a minimally blurred edge towards the centre of
the centre of the image. Unless the scale change is very
large, the likelihood is that this edge towards the centre of
the image will not have been a↵ected by the scale change
or motion blur, and will therefore represent a scale change
of zero, regardless of the true change in scale. As the origin
of the scale change will be the centre of the image Eqn.1
describes this relationship between an image point u and
the point u0 after a change in focal length f : �f .

u = f

X

Z

u

0 = (f +�f)
X

Z

u

0

u

= 1 +
�f

f

(1)

Where X is a scene point of distance Z from the front248

nodal point of a lens.249

Figure 3 shows the location of a blur region as detected250

by this algorithm in a synthetically blurred image, and Fig.251

4 the locations of all blur regions over the image.252

After a pair of points has been obtained for each ra-253

dial line, a RANSAC based algorithm is used in order to254

determine the geometric transformation between the sets255

of points. In this process, the start and end points of the256

maximum gradient ramps from the radial search lines are257

Figure 3: A line sample location (left) and profile (right). The peak
gradient has been highlighted and location marked on the image.

represented as their respective image coordinates. The ge-258

ometric transform brought about by a change in scale is259

then estimated to produce an estimate of the scale trans-260

form, using the points identified at each radial line. To261

achieve this, we adapt the standard RANSAC algorithm262

to take into account the observation that measuring the263

magnitude of motion blur by searching for the maximal264

gradient ramp will always produce an overestimate for the265

blur magnitude. This would be because even in the case266

where there is no blur, the sharpest edge might be sev-267

eral pixels in extent, and in practice, in an image with268

moderate motion blur, will extend several pixels beyond269

the blurred region. Because of this, the error metric used270

in the RANSAC based geometric estimation is weighted271

to apply a higher penalty to estimations that produce an272

under-estimate of the scale magnitude. This is done by273

changing the model of our system in order to achieve a274

result that match with the assumption that measuring the275

length of a blurred edge will result in an over-estimate of276

the true scale change.277

In this process, instead of finding a hypothesis to max-278

imise the number of start and end points for blur that279

comply with ((r0 � r)2 < ✏

2) where r

0 and r are the mea-280

sured and predicted radial displacements, we maximise281 P
((r0 � (r + ✏))2 < ✏

2). By using this method, in or-282

der to be considered an inlier, r0 must be in the range r283

to r + 2✏, as opposed to r � ✏ < r

0
< r + ✏ as in a tradi-284

tional RANSAC procedure. The upper limit of this range:285

r+2✏ was chosen as a limit arbitrarily and produces good286

results, however it should be noted that other values, or287

the use of methods such as Least Median Square estimate,288

or MLESAC could be used to determine this value, al-289

though these are not evaluated in this work. This method290

provides an accurate estimate of the transformation be-291

tween the points - whilst also rejecting outliers in the sets292

of points.293

As described in Section 2.1, the shutter of the camera294

will only be open for a fraction of the frame time depending295

on the shutter angle. The estimate for scale change from296

motion blur will only take into account the time for which297

the shutter was open, and not the overall frame.298

3.2. Measuring Rotation Between Two Frames299

The optical flow of two motion-blurred images can be300

calculated using the baseline method described in [17].301
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Figure 4: Blur length estimation along all radial lines

Then, a set of feature points in the first frame are sampled302

using [15], and their flow vectors used to calculate corre-303

sponding points. As it is expected that there will be some304

outliers, we use a RANSAC algorithm similar to that de-305

scribed in Klein & Drummond to determine a consensus306

set of matching points, in order to determine rotation. As-307

suming a correct pair of point matches, p̂1 and p̂2, where308

p̂ = [x, y, 1]T is a homogeneous point in the image coordi-309

nate system, the line joining these points will be described310

as Lp = p̂1⇥p̂2

|p̂1⇥p̂2| . As p̂1 and p̂2 are homogeneous coordi-311

nates, the line L = (a, b, c)T for which a point p̂ = (x, y, z)312

lies on is specified by the equation ax + by + cz = 0. As-313

suming a further pair of correct point matches is available,314

and the normal line to these can be calculated, the point of315

intersection of these two normal lines (L1 and L2) should316

then be the centre of rotation. This is where using the317

homogeneous coordinate system is useful, as if the cam-318

era is rotating around a point not in the image plane (for319

example, its x or y) axes, the centre of rotation can still320

be represented in the image coordinate system, as the two321

normal lines from point estimates would cross at infinity,322

a point which can be represented in homogeneous image323

coordinates as p̂ = (x, y, 0)T .324

Candidate point pairs and the best estimate for rota-325

tion are selected using RANSAC. In this process, a pair of326

candidate points and their matches are selected, and the327

centre for rotation, C is calculated based on the method328

described above. The connecting line for every other point329

match is calculated, and the normal at the midpoint to this330

line LN , along with the line LC from this midpoint to the331

centre estimate, is calculated for each point pair. This is332

illustrated in Fig. 5. The angle between the line LN and333

LC , ✓, is calculated for each point pair - and capped at a334

threshold value ✏. In this work the value for ✏ is small, at335

5 degrees, however should be varied by the user depend-336

ing on the amount of candidate points expected (which337

can depend on the visual texture of a scene) and expected338

rotation magnitude.339

The centre estimate producing the lowest sum of these340

angles is then selected as the rotation centre. This point341

Figure 5: Illustration of Estimating the Centre of Rotation from
Point Match Pair Candidates

is then normalised, and it’s coordinates C = (x, y, z)T342

treated as a 3D point. The Least Mean Squared value343

for the angle between this point and the centre points344

between inlying point match pairs is then treated as the345

frame-to-frame rotation magnitude. Results obtained us-346

ing this method alongside Klein and Drummond‘s single347

frame method - using synthetic and real image sets are348

shown in the following sections.349

3.3. Determining Shutter Angle350

By combining the results for rotation obtained from a351

single frame, and those from a pair of frames - it should352

be possible to calculate the exposure time of the frame as353

a fraction of the framerate, simply by dividing the motion354

magnitude obtained from blur by that of the frame-to-355

frame track. This calculation could further be simplified356

by using just the geometric distance between points identi-357

fied by searching along the radial or circular profiles. How-358

ever, it is envisaged that by performing the extra stages359

of rotation estimation will provide a more robust estima-360

tion for shutter angle. This is because both methods for361

determining rotation include the rejection of outliers as an362

important stage in the calculation of the magnitude.363

3.4. Determining Amount of Blur in an Image364

It is envisaged that the methods presented previously365

will only work well if there is a su�cient amount of blur366

from motion present in the image. This is a limitation also367

highlighted by the authors of [6]. In order to evaluate the368

e↵ectiveness of the method for accurately determining the369

scale change of di↵erent magnitudes across di↵erent sets of370

images, we propose a method for quantifying the amount371

of blur present across the whole image. Furthermore, it372

is proposed that this accuracy measure could be used to373

correct estimates over further footage of the same scene,374

given a ground truth for some initial data. This could375

be useful in such a situation where, for example, exter-376

nal hardware was being used to record the change in lens377
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barrel and hence focal length position - and this hardware378

becomes unsynchronised or uncalibrated throughout the379

shot. Such situations are not uncommon and can require380

a large amount of work post-production to rectify. We381

would also typically expect the methods described here to382

be applied on a sequence of frames, some of which will not383

contain any change in focal length or rotation. As part384

of the process for estimating shutter angle from rotation385

(a change in an extrinsic parameter), it is possible to ac-386

curately deduce cases for which rotation and hence blur387

is zero using the optical flow method (results of which are388

shown by Fig. 8) which must be performed on each pair of389

frames. As previously stated, it is not possible to identify390

an blurred edge of length zero, so in the case of zero focal391

length change - the proposed algorithm will always return392

a result greater than zero. Classifying the blur character-393

istics of a frame with zero scale change would therefore394

allow for automatic identification of these frames395

In the case of focal length from a single frame the fol-396

lowing method is used to determine the amount of blur397

present in an image. We define blur energy ratio rblur in398

an image as the average ratio between the energy of a pro-399

file of pixel intensities along a set of radial lines across an400

image, and the average energy of the same set of sample401

lines of the same image after having undergone a gaussian402

blur operation. In this work we used a Gaussian kernel403

! =
⇥
1
4 � a

2 ,
1
4 , a,

1
4 ,

1
4 � a

2

⇤
where a = 0.375, and in order404

to produce a more significant result for the di↵erence in405

energies across a radial profile, the di↵erence between the406

top and the 3rd level of the Gaussian reduction pyramid407

is sampled. Similarly to the method used for determining408

scale change from motion blur, radial lines are sampled409

from the outside edges of the image inward - initialised at410

10 pixel intervals along the edges of the image. The rea-411

soning behind this is that an image that contains motion412

blur will have a lower energy (lower frequency of changes in413

intensity) than a sharp, non-motion blurred image - as de-414

scribed in earlier sections. However the ratio of energy be-415

tween this motion blurred image and its gaussian blurred416

equivalent should be larger than the ratio of profile en-417

ergy between a non motion-blurred image and its blurred418

equivalent. This is illustrated in Figure 6 and Figure 7,419

where it can be seen that for a non-motion blurred orig-420

inal image, there is a much higher frequency (and hence421

greater energy) of intensity change for the original image422

than the gaussian-blurred equivalent image. For the pro-423

files shown in Figure 7, the frequency of changes in inten-424

sity for the original image is much closer to that of the425

Gaussian-blurred equivalent. We define energy as the sum426

of squared values of image intensity along the profile line,427

and sample along multiple profile lines, taking the mean428

ratio of energies across all lines over the image pair to be429

value for the di↵erence in image energy.430
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Figure 6: Non-Blurred image and Gaussian Blurred Image with Cor-
responding Profile Lines
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Figure 7: Motion-Blurred image and Gaussian Blurred Image with
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4. Results431

Presented in this section are the results obtained from a432

variety of tests, both on synthetic and real footage. In the433

case of synthetic images, a single static photograph had an434

animated scale change applied using the Nuke compositing435

tool (a 2D image manipulation package well suited to ap-436

plying transforms, filters and animation and used widely437

in the post production industry). Motion blur for this438

set of images was then simulated for the specified shutter439

opening time at each frame.440

Initially results are shown as in [1] for the raw out-441

put produced from running the algorithms for estimating442

changes in intrinsic values on a sequence of frames without443

first considering the amount of blur present in each frame444

of the sequence using the method described in Sec. 3.4.445

For real image sequences, an external electro-mechanical446

zoom encoder was attached to the lens on the camera used447

to capture the footage. This is a proprietary device that448

uses a geared rotary encoder meshed with the zoom ring449

on the lens barrel to track change in rotational position450

of the ring. After a simple calibration and synchronisa-451

tion, this data can be used to infer the focal length at a452

particular frame, independently from the image captured453

by the camera. Such devices are commonly used through-454

out the visual e↵ects and post-production process as they455

provide a reliable method of measuring changes in camera456

parameters.457

For the production of ground-truth values for camera458

rotation, the camera was rigidly attached to a high-end459

rate-gyro capable of determining rotation up to a speed460

175�/sec with a standard error of 0.0005�/sec/
p
Hz. [12]461

presents a comprehensive description of the specifications462

and sources of error in inertial measurement systems.463

The values obtained from both the ground truth and464

original estimates of a real data-set for change in focal465

length are then used to calculate the expected error factor466

for each range of blur magnitude present in the frame. The467

ground truth magnitude for scale change is also used to468

validate that our measurement of blur present in a frame469

is e↵ective. These error metrics are then used to attempt470

to produce a more accurate estimate of scale change from471

blur, using new footage of the same scene.472

4.1. Synthetic Tests473

To test the algorithms against a synthetic and known474

ground truth for a change in focal length, shutter angle,475

and rotation, the Nuke compositing tool was used to create476

an animated series of frames from a single image.477

4.1.1. Focal length change from a Single Frame478

Results for the motion estimates for a set of rotation479

changes and changes in focal length are shown here. In480

both cases, as it is not possible to determine the direction481

of motion from a single frame, all of the values for both482

focal length change and rotation are absolute values. Fig.483

10 shows a plot for results obtained for determining the484

change in scale induced by a change in focal length. In485

panel (i), the dashed blue and red lines should ideally be486

identical, and in the scatter chart in panel (ii), the points487

should lie in an x = y line. In this result, the chart in488

panel (i) also shows the change in scale corrected for the489

known shutter exposure time of the virtual camera, which490

should equal the frame to frame estimate of scale (the true491

scale in this case). For most frames, it can be seen that492

the raw estimation from blur overestimates the true scale493

value. This is to be expected, as if there is zero blur, the494

sharpest edge in the blur profile to be found (as described495

in Sec. 3) will still be at least one pixel (in practice on real496

photographs, this will likely be more) - which will there-497

fore always result in some scale change being estimated.498

This is the e↵ect that we aim to compensate for using the499

blur-information obtained using the method described in500

Sec. 3.4 to estimate the expected error of results of a scene,501

and the results for this when applied to a real scene are502

shown in Sec. 4.3.503

4.1.2. Shutter Angle and Rotation Estimation from a pair504

of Frames505

Figure 9 shows results from a synthetic sequence under-506

going a series of varying rotations and with an animated507

shutter angle. Panel 1 in this figure shows the estimates508

for the magnitude of motion blur obtained from both the509

pair of frame method and single frame Klein and Drum-510

mond method, the latter being un-corrected for the known511

shutter exposure time. From this result it can be seen512

that in many cases where there is only a small amount of513

rotation, the single frame method from motion blur will514

over-estimate the amount of rotation that has occurred.515

However, the blur based system appears to consistently516

underestimate the value for rotation when there is a sig-517

nificant change in rotation, and this behaviour is to be518

expected - as detailed in Sec. 3.1, as the motion from blur519

will only represent a fraction of the frame time, whereas520

the frame to frame track will represent the full movement521

between frames.522

Due to the noise in measuring rotation from blur, the523

resulting estimate for shutter angle is smoothed using a524

moving average filter (with a span of 4 frames) across the525

frame-set. This filtering is necessary because whilst the526

RANSAC algorithm described in Sec. 3.1 is able to reduce527

the e↵ect of outlying estimates for rotation of the frame,528

certain conditions (further described in Sec. 5) will always529

produce incorrect results. The most significant source of530

error occurs when the magnitude of blur in the image is531

not su�cient for the accurate detection of the true change532

in focal length or rotation. By filtering these estimates we533

are able to reduce the impact of these errors whilst still534

maintaining an acceptable level of accuracy over periods535

where there is only a small amount of rotation present in536

the frame. A moving average filter was selected as this537

is a simple to implement filter that will filter out high-538

frequency changes in the estimate for shutter angle. We do539

not expect the shutter angle to change at every frame, so540
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Rotation with Gyroscope to Validate Rotation from Optical Flow Calculation (Poster)
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Comparison of Rotation from Optical Flow Calculation with Gyroscope Data (Ground Truth) - Performed on the ‘Poster’ Real Dataset
This dataset was produced with a rigid camera-gyroscope rig in order to validate that the estimates produced by the
optical flow algorithm for rotation in the presence of motion-blur were accurate when the rotation magnitude and axis
of the camera is arbitrary and otherwise unknown.

Figure 8: Comparison of Results from Optical Flow based Rotation Estimation and Gyroscope Readings

this method allows for a single step change in shutter angle541

to be easily identified, whilst filtering the noisy calculation.542

Furthermore, outlying estimates that predict the shutter543

angle to be 1 or greater (i.e. the shutter was open longer544

than the frame time) are also automatically discarded.545

4.2. Real Footage546

The algorithms described in this work were tested over547

a set of real images captured by a Canon 700D SLR Cam-548

era along with a 70-200mm lens. The scenes shot were in-549

doors and in good lighting conditions, and outdoors with550

natural light and some movement of objects in the scene551

(for example, trees moving in the wind and pedestrians552

walking through the frame). For the case of focal length553

estimation, a rotary encoder was attached to the lens bar-554

rel to track changes in rotation of the zoom wheel, and555

hence changes in the focal length. Each sequence consists556

of approximately 300 frames. In the case of rotation - the557

camera was rotated quickly and manually around an axis558

at various speeds and magnitudes, in order to produce a se-559

quence that would exhibit large amounts of motion blur.560

Likewise, for changes in focal length, the zoom was also561

changed quickly and at varying speeds and magnitudes562

whilst filming. In all cases, the shutter speed was set to563

a constant 1/30th of a second - apart from the Chairs564

dataset where it was changed to 1/60th of a second after565

approximately 160 frames.566

4.2.1. Shutter Angle and Rotation Estimation from a Pair567

of Frames568

In order to validate the results produced using the 2569

frame optical flow based method for determining camera570

rotation, the estimates obtained using this method on real571

footage were compared with the results obtained from a572

gyroscope rigidly attached to the camera during rotations573

around an axis. Figure 8 shows the results of this test.574

Ideally, the line plot for the angle estimated from optical575

flow against the gyroscope data should be identical, and576

the scatter plot for this data tend to an x = y line.577

Shown in figure 9 are the results obtained from rotat-578

ing a camera around an axis over various magnitudes, and579

estimating rotation from both optical flow and blur. Dur-580

ing shooting, the camera‘s shutter speed was changed from581

1/30th of a second (0.83 of a frame at 25fps) to 1/60th of582

a second (0.415 of a frame at 25fps). Figure 9 also shows583

the estimated shutter angle as a fraction of the frame from584

the di↵erence in estimations. As with the results from syn-585

thetic sequences, the value for shutter angle was calculated586

from a smoothed estimate for rotation from blur at each587

location above a threshold value.588

4.2.2. Focal Length Change589

Presented in figure 11 are the results for determining590

a change in focal length using a single frame using the591

method described previously. As with rotation from blur,592

the single frame method of determining focal length change593
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Synthetic Sequence (Synthetic Box)
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Shutter Angle and Rotation Estimates from a Synthetic Dataset (Synthetic Box Sequence)

Rotation with Changing Shutter Angle. The final two frames above have a shutter angle of half the first three. (Chairs)
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Rotation from Optical Flow
Rotation from Blur
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(iii) (iv)

Shutter Angle and Rotation Estimates from a Real Dataset (‘Chairs’ Sequence)

Figure 9: Results for Estimating Rotation and Shutter Angle from Blur and Optical Flow
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(i) (ii)

Change in Focal Length Estimates from a Synthetic Dataset. Ideally, the dashed-blue and solid-red lines in the left-hand chart should align, and the scatter plot should tend to an x = y line.

Figure 10: Results for Estimating Change in Focal Length from Blur with a Synthetic Data Set
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(i) (ii)

Change in Focal Length Estimates from a Real Dataset (‘Zoom Boxes’ Sequence). Ideally, the green and red lines in the left-hand chart should align, and the scatter plot should tend to an x = y line.
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(iii) (iv)

Change in Focal Length Estimates from a Real Outdoor Dataset (‘Building’ Sequence). Ideally, the blue and red lines in the left-hand chart should align, and the scatter plot should tend to an x = y line.

Figure 11: Results for Estimating Change in Focal Length from Blur for Real Datasets
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(i) (ii)

Change in Focal Length Estimates from a Real Outdoor Dataset with a Low Depth of Field Set (approx. 1.5m) (‘Flower’ Sequence).
Ideally, the green and red lines in the left-hand chart should align, and the scatter plot should tend to an x = y line.

Figure 12: Results for Estimating Change in Focal Length from Blur on a scene with a low Depth of Field
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is unable to determine the direction of the change, hence594

data from the zoom encoder (taken as the ground truth)595

is converted to an absolute change in value. The initial596

indoor footage - ‘Zoom Boxes’ sequence in Fig. 11 panels597

(i) and (ii) was shot with good lighting conditions, how-598

ever it can be seen that there is a smaller amount visual599

texture in the image, such as sharp edges and high con-600

trast, when compared to the outdoor ‘Building’ sequence601

(panels (iii) and (iv) of the same figure). The result set for602

the ‘Building’ sequence as shown in panels (iii) and (iv) of603

Fig. 11 are clearly of a higher quality, and would suggest604

that the presence of good visual texture and a large num-605

ber of sharp edges in the scene is important for achieving606

accurate results.607

4.2.3. Alignment of Sensor Data with Video Footage608

During capture of real data using both the gyroscope609

and zoom encoder equipment, it was necessary to syn-610

chronise the recording equipment with the video frames.611

This is performed by showing the camera a ‘digislate’ - a612

device which displays a time-code which refreshes at the613

specified framerate at the start of recording, and synchro-614

nising electronically this time-code with the data record-615

ing equipment. When the video is retrieved, the frames616

are manually inspected to read the time-code displayed on617

the device and correlate with the frame number of the se-618

quence. Whilst this is a straightforward process to perform619

in a controlled environment, it is not practical in every620

shooting environment, e.g. if shooting from an aircraft. In621

such cases, manually aligning the data to the frame can622

be a di�cult process. If an estimate can be found from623

frames with motion blur present as to the change in ei-624

ther zoom or rotation, then it could be used to assist in625

the alignment of the data in the case of failed synchroni-626

sation. One such way of achieving this would be the use627

of cross-correlation over both signals (estimate from blur628

and ground truth from sensors). Shown in figure 13 are the629

results from using the method of focal length estimation630

described in this work to align data from the zoom encoder631

sensor, compared to the actual synchronised values. In this632

case, the zoom encoder started recording positions before633

the camera started recording frames (recording changes in634

zoom that were not filmed) - shown in panel (i) of Fig. 13635

and continued recording after the camera was stopped.636

The algorithm for estimating the amount of blur was run637

on the captured footage the results of which are shown in638

panel (ii) of the same figure and the data aligned using639

the results from the algorithm and cross correlation with640

the unsynchronised stream of data, the predicted align-641

ment shown in panel (iii). This predicted synchronisation642

shift di↵ers by 1 frame from the actual known value of 908643

frames.644

4.3. Evaluating Algorithm E�cacy vs. Amount of Blur645

Present646

Section 3.4 describes the method used for determining647

the amount of blur present in a scene, and shown here are648

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12

Time (Frame)

Pe
rc

en
t S

ca
le

 C
ha

ng
e

 

 
Unsynchronised Value from Encoder

(i) Unsynchronised data stream from encoder

0 20 40 60 80 100 120 140 160 180
−1

0

1

2

3

4

5

6

7

8

Time (frame)

Sc
al

e 
C

ha
ng

e 
(p

er
ce

nt
ag

e)

 

 
Scale Change Calculated Using Focal Length from Blur Algorithm

(ii) Estimated Focal Length Change From

Blur for Captured Frames (Frames 908 - 1073)

0 200 400 600 800 1000 1200
0

2

4

6

8

10

Time (frame)

Pe
rc

en
ta

ge
 C

ha
ng

e 
in

 S
ca

le

 

 
Unsynchronised Value from Encoder
Estimated Synchronisation

(iii) Scale shift calculated from cross

correlation of zoom estimates and

unsynchronised stream.

Shift estimated as 907 frames
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the results for determining this metric (rblur) along with649

the accuracy of the zoom estimates from Sec. 4.2.2. In or-650

der to evaluate the amount of blur necessary in an image651

to produce an accurate result, we calculate the amount of652

blur present in each frame of the sequence of real images653

using the method described in Sec. 3.4, where each frame654

has undergone a change in focal length of varying mag-655

nitude (including zero). This magnitude of blur is then656

compared to error between the estimate of scale change657

and the ground truth values for scale change at that frame.658

Figures 14,15 and 16 show the results of this analysis for659

each of the real datasets presented in Sec. 4. We would660

expect to see a higher proportion of over-estimates for the661

magnitude of scale change in the image, particularly at a662

low known scale change. The graphs for this analysis tend663

to support this conclusion - however, in all three cases664

there appears to be a reasonable amount of error when665

the scale change is greater than zero - but the amount of666

blur present in the image is not at it’s maximum. In the667

graphs of figures 14,15 and 16, this can be seen as a re-668

ported under-estimate towards the middle of the blur-ratio669

scale (the x axis) where the red true scale-change line rises.670

This result would further support the conclusion that as a671

condition of a scale change being accurately estimated, it672

must cause significant motion blur in the image. However,673

it would appear that at the higher end of the scale change674

the method clearly over-estimates the true scale change by675

a considerable amount, and can sometimes under-report676

it. This would appear to contradict the theory that larger677

scale changes, resulting in larger amounts of blur present678

in the image (reflected by the rise of rblur) should result679

in more accurate predictions using this method.680

Figure 14: Results for comparing amount of blur in a frame with
scale change estimate accuracy for the ‘Boxes’ Dataset

Figure 15: Results for comparing amount of blur in a frame with
scale change estimate accuracy for the ‘Building’ Dataset

Figure 16: Results for comparing amount of blur in a frame with
scale change estimate accuracy for the ‘Flower’ Dataset

Using these results, it is proposed that a ‘confidence’681

value of the estimated result can be predicted, in that for682

a images with a range of values calculated for rblur, the683
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expected result from using the original method for scale684

change from blur would be accurate to within a certain685

percentage error. This value could then be used to in-686

crease the accuracy of further results obtained from the687

same scene, in a situation where a ground truth would not688

be available. This would be especially useful in order to689

be able to categorise frames in which the scale change is690

likely to be zero, and hence saving the need to attempt to691

calculate a transform estimate for this frame. Applying692

the error metrics determined for the ‘Building’ scene to693

further footage of this scene (with the camera at a slightly694

di↵erent orientation) produces the results shown in Fig. 17695

and Fig.18. These results are obtained by calculating the696

blur ratio (rblur) from each frame and producing a ‘cor-697

rected’ result for this frame by applying the error metric698

for the range in which rblur for this frame sits to the ini-699

tial estimate. That is, if the frame is judged to have a700

value for rblur as 0.987, the corrected result will be the701

estimated result scaled up by the error for this blur ratio702

from Fig. 15. If a value for rblur is encountered that is not703

present within Fig. 15, then the value for scale change pro-704

duced by the original algorithm is used. Similarly, if the705

value for rblur is below a threshold indicating that no scale706

change is taking place, the corrected value is clamped to707

0. We find that the cross correlation coe�cient between708

the naive, raw estimates and the actual values to be 0.865,709

whereas the correlation coe�cient between the corrected710

set and true values to be slightly better at 0.879.711
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Figure 17: Comparison between the ‘Naive’ Focal Length from Blur
Algorithm, and the ‘Blur Aware’ Method that multiplies results from
the Naive Method with Error Factors Determined in Section 4.3.
Ideally, the green line should be identical to the red, and closer to
this than the blue line. Frames that are determined to have no scale
change (a blur-ratio of less than 0.981) are capped at zero.

4.4. E↵ects of Depth of Field712

Figure 12 shows the result of a real scene with a low713

depth of field (the ‘Flower’ dataset). The focal distance714

in this scene was set to approximately 1.5m, whereas in715

the other real scenes used in this work, the focal distance716

is set to infinity. It can immediately be seen in panels (i)717
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Figure 18: Comparison between the ‘Naive’ Focal Length from Blur
Algorithm, and the ‘Blur Aware’ Method. Ideally, the points should
tend to an x=y line, and the blur aware method should have points
closer to this than the ‘naive’ method

and (ii) that the results are somewhat more inaccurate718

than those from other images, with a tendency to greatly719

overestimate the true extent of scale change during large720

changes in scale. Images with a low depth-of field would721

typically have more blur in the frame regardless of motion722

blur introduced by scale change during shutter opening.723

This is something that Fig. 16 would confirm - as the zero,724

or close to zero scale change extends further along the blur725

ratio scale than in the results shown for other sequences.726

In theory, as long as part of the image is in focus, and727

this part has enough visual texture - such as sharp lines,728

then these would be blurred by the scale change and not729

from defocus - and could be used to calculate the scale730

change. In practice however, it is often the case that the731

in-focus part of the image would be at the centre of the732

image. As discussed in Sec.3.1, it is likely that points733

towards the centre of the image will be minimally scaled734

- and therefore unlikely to give a reliable estimate for the735

focal length change.736
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5. Limitations737

The results obtained from using motion blur in this738

work do su↵er from several of the limitations discussed in739

the original Klein & Drummond paper. Notably, one of740

the most significant problems encountered for the estima-741

tion of parameters using blur is the need for a reasonable742

amount of blur to be present in order to be successfully743

detected. We have however presented a viable method to744

overcome this limitation somewhat by using prior knowl-745

edge of the error of the scale change estimate for a scene,746

and the amount of blur present in an image in order to747

better predict the scale change.748

Another significant issue with the use of a single motion-749

blurred frame to estimate parameters is the inability of the750

system to cope with frames that have undergone more than751

one transformation - e.g. a rotation alongside a change in752

focal length. Another significant limitation of this work is753

the inability of the system to cope with large movement754

of objects in the scene. Our results suggest that a small755

amount of movement, such as pedestrians in a scene or a756

tree blowing in the wind will still allow for accurate results757

to be obtained. However, experimentation has shown that758

if the scene is completely obscured by movement, such as a759

vehicle passing in front of the camera during a focal length760

change, will cause the algorithm to fail.761

Other limitations described in [6] for estimating pa-762

rameters from blur are also present in this system, such as763

the intolerance to strobing, over-saturation, the require-764

ment for pure rotation and a constant centre of rotation.765

However, when combined with the optical flow method de-766

scribed in [17], it is possible to determine the ‘sign’ of the767

rotation estimates. The method presented in [17], whilst768

extremely accurate (as shown by fig. 8), does have a signif-769

icant limitation of requiring a large amount of resources to770

compute - often necessitating frames to be re-scaled prior771

to calculation. On average, for each blurred pair of frames772

at at size of 640⇥ 480 pixels, it would take approximately773

30 seconds to compute an estimate for the optical flow,774

whereas the methods from blur would compute a result in775

near real-time on the same hardware (⇡ 30 m/s), although776

this speed is highly dependent on the number of edgel sites777

selected and also the size of the image. Recent works in778

[2] and [3] have attempted to address this limitation.779

Another factor that may have an e↵ect on the result780

obtained for real footage would be the di↵erences in blur781

introduced into a frame by a camera’s rolling shutter (de-782

tailed in [8]). All of the algorithms described and used783

in this paper operate under the assumption that when784

a frame is blurred due to motion, the blur is always as-785

sumed to be constant across this frame. In a camera with786

a rolling shutter, each line of the sensor in the camera is787

sampled sequentially at di↵erent times. Therefore, during788

fast movement, in a camera with a rolling shutter, this789

assumption that all parts of the image will be blurred by790

a constant amount cannot be true. Investigating the im-791

pact and ways of minimising these e↵ects in the algorithms792

using blur would be an important next stage of research.793

6. Conclusions794

This paper has shown an earlier method for determin-795

ing changes in focal length during a single motion blurred796

frame, and has produced promising results from this method797

that allows for the estimates to be calculated quickly. We798

have also extended and combined two previous works in799

order to estimate the shutter angle of a frame. We have800

extended upon this work by presenting a new method to801

work with the original as part of an extended system in802

order to address previous limitations and enhance the ac-803

curacy of this new algorithm. We have also tested our804

methods on a new real data set and have been able to805

demonstrate that this improved method gives more ac-806

curate results, furthermore, we have examined how this807

system might cope with an image sequence with a shallow808

depth of field - and have uncovered potential limitations809

that this may present. An area of further research would810

be extending this system to handle frames which have been811

blurred by more than one type of motion - such as in the812

case of a translation and rotation, and work into this topic813

is ongoing.814
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