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Abstract

We present an interactive, robust and high quality method for fast shadow removal.

To perform detection we use an on-the-fly learning approach guided by two rough user

inputs for the pixels of the shadow and the lit area. From this we derive a fusion image

that magnifies shadow boundary intensity change due to illumination variation. After de-

tection, we perform shadow removal by registering the penumbra to a normalised frame

which allows us to efficiently estimate non-uniform shadow illumination changes, re-

sulting in accurate and robust removal. We also present the first reliable, validated and

multi-scene category ground truth for shadow removal algorithms which overcomes lim-

itations in existing data sets – such as inconsistencies between shadow and shadow-free

images and limited variations of shadows. Using our data, we perform the most thorough

comparison of state of the art shadow removal methods to date. Our algorithm outper-

forms the state of the art, and we supply our P-code and evaluation data and scripts to

encourage future open comparisons.

1 Introduction

Shadows are ubiquitous in image and video data, and their removal is of interest in both

Computer Vision and Graphics. Although shadows can be useful cues, e.g. shape from

shading, they can also affect the performance of algorithms (e.g. in segmentation and track-

ing). Their removal and editing is also often the pain-staking task of graphical artists. A

successful shadow removal method should seamlessly relight the shadow area while keeping

the lit area unchanged. A shadow is generally defined as having an umbra and penumbra area

– denoted by the central shadow region and its border (penumbra) transitioning illumination

between the fully dark and lit area. A shadow image Ic can be considered as a Hadamard

product of a shadow scale layer Sc and a shadow-free image Ic as shown in Eq. 1 where c is

a RGB channel. The scales of the lit area are 1 and other areas’ scales are between 0 and 1.

Ic = Ic ◦Sc (1)

In this paper, we propose an interactive, high-quality and robust method for fast shadow

removal using two rough user-defined strokes indicating the shadow and lit image areas.

Our approach sacrifices full autonomy for very broad and simple user input – contrasting

with existing manual approaches that require fine-scale input (accurate shadow contours)
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or highly simplistic inputs (single pixel) that can result in shadow detection artefacts. Our

on-the-fly learning approach is robust to large variations in user input. Given detection,

we deliver reliable shadow removal – verified with thorough quantitative tests for different

types of shadow scene (for the first time in this area) comparing to previous state of the art

approaches. We also present a large high-quality and multi-scene category ground-truth data

set for the evaluation of shadow removal. This is quantitatively verified to ensure registration

and illumination errors between test and ground truth images are eliminated. Our approach

represents a state of the art method for shadow removal, with the most robust comparative

evaluation of such approaches to date.

1.1 Related work

Approaches to shadow removal can be categorised as either automatic [5, 13] or user-

aided [1, 7, 9, 10, 11, 12]. The differentiation between fully automatic or user-aided relates

to initial detection of the shadow – with removal itself (after detection) being a largely au-

tomatic task. In any case, both removal and detection are ill-posed problems and difficult to

reliably achieve. Intrinsic image based methods are one such popular approach to the prob-

lem, such as [5, 13]. The decomposition of intrinsic images provides shading and reflectance

information but can be unreliable leading to over-processed results. Other approaches [8, 14]

detect shadows by learning shadow features. However, detection is constrained by the range

of training data and quality of image edge detection and segmentation there-in. User-aided

methods generally achieve higher accuracy in shadow detection at the practical expense of

varying degrees of manual assistance. Wu et al. [12] require the user to define multiple

regions of shadow, lit area, uncertainty and exclusion. Others [9, 11] require input that care-

fully defines the shadow boundary. Shor and Lischinski [10] only require one shadow pixel

as input, but have limitations in cases where the other shadowed surfaces are not surrounded

by the initially detected surface. Arbel and Hel-Or [1] require users to specify multiple tex-

ture anchor points. [5, 10] apply native in-painting for penumbra recovery which result in

penumbra artefacts. Most others [1, 7, 9] assume highly-constrained curve or surface func-

tions for illumination change which limit their range of removable shadows.

To date, most shadow removal methods [1, 7, 11, 12] have been evaluated by visual

inspection on some selected images – with only a few exceptions performing quantitative

evaluation. This is in part due to a lack of high-quality, varied, and public ground truth

data. [10] performs a quantitative test but comparison is difficult due to the their data not

being publicly available. Guo et al. [8] provide the first public ground truth data set for

shadow removal and perform quantitative testing. However, the difficultly of collecting such

a data set is highlighted in their work, with the appearance some global illumination changes

and mis-registration between the shadow and shadow-free images being a difficult factor to

control. This can make quantitative testing on such data somewhat difficult, as these errors

can influence shadow removal results.

1.2 Contributions

Given our overview of state of the art approaches, we propose three main contributions:

1) A rigorous, highly-varied and categorised shadow removal ground truth data set:

Our quantitatively verified high quality data set contains a wide range of ground truth data

organised into common shadow categories. Based on this data, we quantitatively evaluate

our method against other state of the art algorithms on different shadow category types.

2) Simple user input based shadow detection: Our shadow detection component requires
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only two rough user scribbles marking samples of lit and shadow pixels. Our approach

differs from previous work requiring more complex user-inputs or simpler inputs that com-

promise robustness and quality.

3) High quality and fast shadow removal: Unlike existing methods requiring slow pixel-

wise optimisation or an inflexible fitting model, we introduce penumbra unwrapping to de-

rive a few unified intensity samples across the penumbra for robust and efficient estimation

of illumination changes without requiring prior training. Our method is simple and fast yet

offers state of art shadow removal quality.

To summarise, we believe our contributions are important to this area of research due to

our significant improvements over the state of the art in shadow removal in a wide range of

thorough and repeatable tests – what we believe to be the most thorough to date.

2 Shadow removal ground truth

A thorough quantitative evaluation of shadow removal performance requires a high-quality,

diverse shadow-free ground truth. The first public data set was presented by Guo et al. [8].

In our work, we propose a new data set that introduces multiple shadow categories, and

overcomes potential environmental illumination and registration errors between the shadow

and ground truth images. An example of comparison between our new data and a previous

data set is shown in Fig. 1, which highlights the potential difficulties that mis-registration

and illumination instability can present. In § 4, we quantitatively compare the quality of our

ground truth data to the previous state of the art. We capture shadow images and their ground

(a) mismatched illuminaiton (b) unregistered pixels (c) our data (no artefacts)

Figure 1: For each image: top left segment – shadow-free image; bottom right segment –

shadow image. (a) and (b) are taken from [8] which reflect the two annotated issues. An

example from our data – which rejects image pairs with these properties is shown in (c).

truth using a camera with a tripod and a remote trigger. This setup minimises misalignment

due to camera shake. To minimise illumination variance, we capture images in a very short

interval of time using a manual capture mode with fixed ISO and exposure settings. When

collecting data, environmental effects are often unavoidable, e.g., wind can cause camera

shake or the sun might move behind the clouds. Such failed acquisitions are thus rejected

from our data set using a quantitative assessment which we outline in §4. For evaluation,

our shadow data are also categorised according to 4 different attributes: degree of texture,

shadow softness, brokenness of shadow, and colour variation. In total, our final data set after

rejection consists of 186 test cases. We compare our new data against a previous state of the

art data set in our evaluation.

3 Interactive Shadow Removal

In this section, we overview our algorithm first in brief, and then expand on technical details

for each of its components. Our algorithm consists of 3 steps (see Fig. 2):
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1) Pre-processing (§3.1) We detect an initial shadow mask (Fig. 2(b)) using a KNN classifier

trained from data from two rough user inputs (e.g. Fig. 2(a)). We generate a fusion image,

which magnifies illumination discontinuities around shadow boundaries, by fusing channels

of YCrCb colour space and suppressing texture (Fig. 2(c)).

2) Penumbra unwrapping (§3.2) Based on the detected shadow mask and fusion image,

we sample the pixel intensities of sampling lines perpendicular to the shadow boundary

(Fig. 2(d)), remove noisy ones and store the remaining as columns for the initial penum-

bra strip (Fig. 2(e)). We align the initial columns’ illumination changes using its intensity

conversion image (Fig. 2(f)). This results in an aligned penumbra strip (Fig. 2(g)) whose

conversion image (Fig. 2(h)) exhibits a stabler profile.

3) Estimation of shadow scale and relighting (§3.3) From the penumbra strip, we synthe-

sise a few unified samples, e.g. Fig. 2(i), of intensity change which allows for a fast and

robust estimation of illumination change along sampling lines to derive the sparse scales for

all sampled sites (Fig. 2(j)) which are propagated to form a dense scale field (Fig. 2(k)). We

remove shadows by inverse scaling using this non-uniform field (Fig. 2(l)).

(a)

(b)

(c)

1) Pre-processing (§3.1)

 

Invalid illumination

Invalid sub−group

(d)

(e)

(f)

(g)

(h)

2) Penumbra unwrapping (§3.2)

(i)

(j)

(k)

3) Estimation of shadow scale and

relighting(§3.3)

(l)

(m)

Figure 2: Our shadow removal pipeline. (a) input: a shadow image and user strokes (blue for

lit pixels and red for shadowed pixels); (b) detected shadow mask; (c) fusion image; (d) initial

penumbra sampling (solid lines in different colours indicate valid samples of different sub-

groups. Dashed lines are invalid samples removed using two criteria); (e) initial penumbra

regularisation; (f) initial penumbra conversion image; (g) final penumbra regularisation; (h)

final penumbra conversion image; (i) penumbra illumination estimation; (j) sparse shadow

scale; (k) dense shadow scale; (l) output; (m) ground truth.

3.1 Pre-processing

Pre-processing provides a detected shadow mask and a fusion image to assist penumbra

unwrapping. Although there have been automatic methods for shadow detection, results

are dependent on training data quality and variation. Instead, our method requires no prior

training or learning – only two user-supplied rough inputs indicating sample lit and shadow

pixels (Fig. 2(a)). We supply the marked pixels’ RGB intensities in the Log domain as

the training features and construct a KNN classifier. We choose the Euclidean distance as

the distance measure and the majority rule with nearest point tie-break as the classification

measure. We apply spatial filtering with a Gaussian kernel (size = 5, SD = 3) to the obtained
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image of posterior probability and binarised filtered image using a threshold of 0.5. Although

detection errors along the boundary, as well as post-filtering, can result in intensity samples

with unsynchronised illumination changes at sharp boundary, our penumbra unwrapping

and alignment step (§3.2) can compensate for this. Thus, our shadow removal method is

somewhat robust to noise in the initially detected shadow mask, and would also be applicable

to alternative (e.g. automatic) detection methods.

To assist unwrapping of the penumbra, we derive an image that magnifies illumination

discontinuities around the shadow boundary – also assisting penumbra location – which we

call the fusion image (e.g. Fig. 2(c)). There are two steps: 1) Magnification of illumina-

tion discontinuity We derive an initial fusion image F that maximises the contrast between

shadow and lit areas by linearly fusing the three channels (Cl) of YCbCr space as follows:

F = ∑
3

l=1
alCl subject to ∑

3

l=1
al = 1 (2)

where al is the fusing factor of Cl (positive). The best fusing factors are derived by minimis-

ing the following objective function Eb:

Eb(a) = µ(FS)/µ(FL)+(σ(FS)+σ(FL))/σ(FS∪L) (3)

where a is the vector of fusing factors andFS andFL are the two sets of shadow and lit pixels

marked by user scribbles. In this paper, we define σ and µ as functions that respectively

compute the standard derivation and mean of a set of values. The first term ensures larger

distinction between pixels of lit and shadow regions and the second term ensures smaller

variation for pixels of the same lit or shadow regions. 2) Suppression of texture We reduce

image texture by applying a median filter with a 10-by-10 neighbourhood to F .

In our experiments, we found YCbCr colour space to offer more perceptually meaningful

information, while illumination in RGB space can be affected by texture noise. An example

comparison of fusing channels in YCrCb colour space compared to RGB colour space is

shown in Fig. 3.

Figure 3: Comparison of colour space for fusion: The

same optimisation scheme is applied to the image in Fig. 2(a)

but using different colour spaces. Texture noise, such as in the

flowers, appears more pronounced in the RGB fusion image

(left) whilst the YCrCb fusion image (right) presents cleaner illumination information.

3.2 Penumbra unwrapping

The shadow boundary generally has a noisy profile with variable penumbra width. This

can lead to inaccurate estimation of shadow scales and resulting artefacts. We therefore

unwrap the penumbra into a strip and align its sampled columns of illumination change. This

improves the detection of outliers and allows linearisation of processing in the penumbra –

leading to significant gains in efficiency and speed (see Fig. 2(g)).

We sample the intensity of sampling lines perpendicular to the shadow boundary (Fig. 2(d))

as columns for the initial penumbra strip. The length of a sampling line is determined by lo-

cating suitable start and end points guided by the fusion image Fp. We start a bi-directional

search from each boundary point that extends the sampling line towards the lit area (end

point) and the shadow area (start point) as described in Algorithm 1. We initially set the start

and end points as the boundary point (xb,yb) and the direction vector ∆v as the normalised
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Algorithm 1: Penumbra sample end point selection

input : boundary point (xb,yb), fusion image Fp

output: two ends (ps, pe) of a sampling line

F̃ ←− ∇Fp; ps←− (xb,yb); pe←− (xb,yb); L←− |F̃(xb,yb)|; ∆v←− F̃(xb,yb)/L;

repeat

vs←− F̃([ps]); ve←− F̃([pe]); Ls←− vs ·∆v; Le←− ve ·∆v;

ps←− ps−∆v; pe←− pe +∆v;

until ps or pe is not within the range of F or 10Ls > L or 10Le < L;

gradient vector of (xb,yb). To get the position for a start point, we iteratively subtract ∆v

from the start point until its projected gradient is small enough (vice versa for the end point).

To avoid outliers, e.g. sampling lines at occlusion boundaries, we filter invalid samples

based on an assumption of similar shadow scales. We first compute a scale vector Yc =
Tl −Ts where Tl and Ts are the average Log-domain RGB intensities of the lit and shadow

halves of a sample. We convert Yc to spherical coordinates as a feature vector Ys. We apply

DBSCAN clustering [4] (radius:0.2) to Ys of all samples and store the samples that belong to

the largest cluster as valid ones with valid illumination. For finer scale estimation, we divide

the valid cluster into a few sub-groups using mean-shift [3] (band width:0.06) and discard

the samples of the invalid sub-groups whose numbers are less than 10% of the largest sub-

group’s. Fig. 2(i) shows an example of the above sample categorisation.

As the lengths of samples are different, we normalise this by re-sizing all the samples to

their average length na. The normalised samples are concatenated as columns to form the

initial penumbra strip. The vertical illumination change of columns at this stage may still be

misaligned. We therefore resolve this using fine-scale alignment focusing on vertical centre

adjustments and scaling of the columns. Fig. 2(g) shows an example of the aligned strip

and Fig. 4 visualises the process of alignment. To assist alignment, we amplify illumination

changes by deriving a fusion image Wp of the strip. Similar to our previous formulation,

we first fuse the strip using Eq. 2 with factors a and apply an ideal low-pass frequency

filter using a cut-off kw = max([na/8],2)/na. To locate the centre, we generate a conversion

image O(i) =−|Wp(i)−µ(Wp(i))|, e.g. Fig. 2(f), where i is the column number. In O, the

centres of the columns of strips appear as peaks. We can find the peaks of columns from O
and vertically align based on these.

Figure 4: Alignment of penumbra strip: The orange circles are the

centres of columns in the penumbra strip. The orange dashed lines

indicate the desired column length for a strip. The blue and green

lines indicate the shifts required. The alignment is in two steps: (left

to middle) alignment of centre; (middle to right) alignment of illumination change.

To further ensure the rates of illumination change in columns are the same, we vertically

stretch each column about its centre by shifting the two ends of a column. Before alignment,

we derive another fusion image Wc f from the centre-aligned strip Wc repeating the same

procedure of centre alignment. We compute the normalised shifts (the green lines in Fig. 4)

of the upper-ends Bs = (1−σa/µ(σa))/2 where σa is a vector of the column-wise standard

derivations ofWc f . The shifts at the bottom-ends have the same magnitude but in the oppo-

site direction. Although our previous gradient-assisted sampling already offers a clean strip,

minor alignment errors can still noticeable from the intensity distance images . These extra

alignment steps alleviate these (e.g. Fig. 2(f) and Fig. 2(h)).
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3.3 Estimation of shadow scale and relighting

Using the penumbra strip, we can now derive a single unified intensity sample of each valid

sub-group for estimation of penumbra illumination as opposed to performing computational-

costly pixel-wise optimisation, e.g.[7, 9, 11]. Each sub-group’s unified sample of intensity

change G can be computed as the mean of its columns in the aligned penumbra strip such that

white noise is cancelled. Unlike previous work, e.g. [7, 8, 9], assuming a constrained model

of illumination change, our illumination model is adaptive to G. We fit G using a piecewise

cubic Hermite polynomial [6] which preserves the shape of the data and its monotonicity.

Our illumination model is variable for different penumbra profiles as we cluster and re-scale

the intensity samples in the previous steps. For each RGB channel, the normalised estimated

scales are computed by dividing each estimated curve by its maximum. As the sampling

sites have previously been amended during alignment of the strip, we update the two ends of

each sampling line as follows:
[

pn
s (i)

pn
e(i)

]
=

[
po

s (i)
po

e(i)

]
+(C(i)+

[
−1

1

]
Bs(i))Vr(i) (4)

where i is the sampling line index, po
s (i) and po

e(i) are the previous start and end points

of a sampling line, pn
s (i) and pn

e(i) are the updated points, Vr(i) is the vector of boundary

normal, C(i) and Bs(i) are the normalised centre and column width shifts. According to the

updated sampling lines, we distribute the unified scales back to the their original positions

in the image (e.g. Fig. 2(j)). To obtain a dense scale field (e.g. Fig. 2(k)), we interpolate the

sparse scales in the penumbra region by smoothly interpolating and extrapolating the scales

in other regions using spring-metaphor based in-painting [2]. The shadow-free image can be

obtained by inverse scaling according to Eq. 1.

4 Evaluation

In this section, we evaluate our algorithm versus other state of the art shadow removal meth-

ods. We also evaluate the quality of our new ground truth versus existing ground truth. For

fair comparison in the community: our P-code, user input data, output data and scripts for

ground truth evaluation and quantitative evaluations of shadow removal are also made public

along with the release of our data set.

Evaluation of ground truth quality Ideal pairs of ground truth images should have a

minimum intensity difference in the common lit area – which will also indicate whether

registration is poor (due to camera shake or scene movement – which we wish to reject). We

utilise this to assess the quality of ground truth candidates. We first compute the error image

∆I = Is− Ig and the ratio image Ir = Φ(Is)⊘Φ(Ig), where Is and Ig are shadow and shadow-

free images, ⊘ is element-wise division and Φ is a function that converts RGB image to

grey-scale image. The set of pixels Pr of Ir that satisfies Ir(Pr)> 1 are regarded as lit pixels.

We compute the ground truth error Qd = µ(|∆I(Pr)|)+σ(∆I(Pr)) and remove ground truth

pairs when Qd > 0.05. Using this measure, our initial data capture of 195 test cases results in

186 test cases with stable illumination changes between the shadow and ground truth images.

Comparing to the quality of a previous ground truth data set [8] results in a mean error of

0.18 (leaving 28 out of 79 test cases) while our error is 0.02.

Quantitative evaluation of shadow removal In previous work [8, 10], the quality of

shadow removal is measured by directly using the per-pixel error between the shadow re-

moval result and shadow-free ground truth. However, in our work we also consider the size
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of the shadow, and the fact that some shadows may be darker than others. We therefore

compute the error ratio Er = En/Eo as our quality measurement where En is the error be-

tween the ground truth (no shadow) and shadow removal result, and Eo is the error between

the ground truth (no shadow) and the original shadow image. This normalised measure bet-

ter reflects removal improvements towards the ground truth independent of original shadow

intensity and size. We assess En and Eo using Root-Mean-Square-Error (RMSE) of RGB

intensity. To test robustness, we also compute the standard derivation for each measurement.

Yang et al.[13] Guo et al.[8] Gong et al.[7] Ours

Er Er* Er Er* Er Er* Er Er*

Tex.

1 1.85 (1.48) 1.81 (2.65) 0.53 (0.50) 0.42 (0.57) 0.32 (0.19) 0.16 (0.18) 0.26 (0.15) 0.10 (0.10)

2 1.23 (0.74) 0.82 (0.89) 0.59 (1.09) 0.47 (1.15) 0.38 (0.33) 0.27 (0.35) 0.26 (0.11) 0.13 (0.10)

3 1.75 (0.89) 1.37 (1.64) 0.71 (0.60) 0.64 (1.03) 0.70 (0.42) 0.65 (0.55) 0.50 (0.38) 0.39 (0.45)

M 1.61 (1.04) 1.49 (1.36) 0.61 (0.73) 0.51 (0.92) 0.47 (0.31) 0.36 (0.36) 0.21 (0.22) 0.34 (0.21)

Sof.

1 1.27 (0.75) 0.80 (0.87) 0.52 (1.08) 0.39 (1.13) 0.33 (0.31) 0.21 (0.32) 0.23 (0.09) 0.10 (0.09)

2 1.89 (1.60) 2.09 (2.85) 0.70 (0.36) 0.64 (0.43) 0.44 (0.21) 0.29 (0.25) 0.35 (0.15) 0.16 (0.11)

3 1.86 (1.12) 1.86 (1.27) 1.09 (0.75) 1.01 (0.97) 0.76 (0.35) 0.71 (0.53) 0.63 (0.25) 0.44 (0.25)

M 1.67 (1.16) 1.58 (1.66) 0.77 (0.73) 0.68 (0.84) 0.51 (0.29) 0.40 (0.37) 0.40 (0.17) 0.23 (0.15)

Bro.

1 1.47 (1.13) 1.19 (1.83) 0.59 (0.98) 0.48 (1.04) 0.36 (0.29) 0.23 (0.31) 0.26 (0.13) 0.12 (0.10)

2 1.07 (0.17) 0.66 (0.19) 0.42 (0.29) 0.27 (0.35) 0.44 (0.25) 0.29 (0.28) 0.28 (0.11) 0.11 (0.08)

3 2.32 (0.96) 2.56 (1.48) 1.42 (1.06) 1.55 (1.84) 0.98 (0.31) 1.05 (0.50) 0.72 (0.29) 0.53 (0.28)

M 1.62 (0.75) 1.47 (1.17) 0.81 (0.78) 0.76 (1.08) 0.59 (0.29) 0.52 (0.36) 0.42 (0.17) 0.25 (0.15)

Col.

1 1.20 (0.48) 0.73 (0.45) 0.48 (0.64) 0.36 (0.78) 0.32 (0.18) 0.19 (0.20) 0.25 (0.10) 0.11 (0.08)

2 4.19 (2.02) 6.07 (3.28) 1.67 (2.29) 1.56 (2.07) 0.83 (0.67) 0.67 (0.73) 0.48 (0.16) 0.27 (0.17)

3 2.95 (1.95) 3.53 (3.59) 1.20 (0.99) 1.34 (2.33) 1.10 (0.68) 1.20 (1.18) 0.59 (0.27) 0.49 (0.39)

M 2.78 (1.48) 3.44 (2.44) 1.12 (1.31) 1.09 (1.73) 0.75 (0.51) 0.69 (0.70) 0.44 (0.18) 0.29 (0.21)

Other 1.72 (1.26) 1.56 (2.05) 0.72 (0.89) 0.65 (1.26) 0.57 (0.46) 0.48 (0.64) 0.40 (0.29) 0.26 (0.32)

Yang et al.[13] Guo et al.[8] Gong et al.[7] Ours

Er Er* Er Er* Er Er* Er Er*

Tex.

1 1.26 (0.43) 0.70 (0.33) 0.32 (0.25) 0.18 (0.29) 0.26 (0.10) 0.11 (0.08) 0.23 (0.11) 0.08 (0.05)

2 1.16 (0.46) 0.73 (0.49) 0.43 (0.71) 0.31 (0.88) 0.35 (0.27) 0.23 (0.31) 0.25 (0.09) 0.12 (0.08)

3 1.71 (0.84) 1.43 (1.18) 0.64 (0.50) 0.48 (0.56) 0.68 (0.42) 0.65 (0.57) 0.50 (0.40) 0.40 (0.47)

M 1.38 (0.58) 0.95 (0.67) 0.46 (0.49) 0.32 (0.58) 0.43 (0.26) 0.33 (0.32) 0.33 (0.20) 0.20 (0.20)

Sof.

1 1.19 (0.46) 0.70 (0.45) 0.37 (0.65) 0.24 (0.81) 0.31 (0.24) 0.19 (0.28) 0.23 (0.08) 0.10 (0.07)

2 1.20 (0.42) 0.83 (0.41) 0.51 (0.35) 0.42 (0.42) 0.39 (0.17) 0.23 (0.19) 0.30 (0.13) 0.13 (0.07)

3 1.65 (0.83) 1.60 (1.02) 0.96 (0.49) 0.80 (0.65) 0.79 (0.40) 0.76 (0.61) 0.66 (0.30) 0.47 (0.29)

M 1.35 (0.57) 1.04 (0.63) 0.62 (0.50) 0.49 (0.62) 0.49 (0.27) 0.39 (0.36) 0.40 (0.17)) 0.23 (0.15)

Bro.

1 1.21 (0.47) 0.73 (0.46) 0.41 (0.63) 0.29 (0.79) 0.32 (0.24) 0.19 (0.27) 0.24 (0.10) 0.10 (0.08)

2 1.03 (0.19) 0.64 (0.20) 0.29 (0.11) 0.11 (0.06) 0.34 (0.17) 0.22 (0.19) 0.28 (0.10) 0.10 (0.07)

3 2.07 (0.67) 2.18 (0.92) 1.10 (0.53) 0.93 (0.72) 0.98 (0.35) 1.06 (0.55) 0.73 (0.32) 0.53 (0.31)

M 1.43 (0.44) 1.18 (0.53) 0.60 (0.43) 0.44 (0.52) 0.55 (0.25) 0.49 (0.34) 0.41 (0.17) 0.25 (0.15)

Col.

1 1.19 (0.45) 0.71 (0.43) 0.40 (0.62) 0.27 (0.76) 0.30 (0.14) 0.17 (0.15) 0.24 (0.09) 0.10 (0.07)

2 1.47 (0.32) 1.33 (0.64) 0.45 (0.00) 0.34 (0.11) 1.32 (0.82) 1.37 (0.95) 0.38 (0.10) 0.17 (0.05)

3 3.03 (1.95) 3.63 (3.64) 1.21 (1.01) 1.35 (2.38) 1.12 (0.69) 1.22 (1.20) 0.59 (0.27) 0.49 (0.40)

M 1.90 (0.91) 1.89 (1.57) 0.69 (0.54) 0.66 (1.09) 0.91 (0.55) 0.92 (0.77) 0.40 (0.16) 0.26 (0.17)

Other 1.58 (1.07) 1.31 (1.74) 0.59 (0.68) 0.48 (1.10) 0.54 (0.47) 0.47 (0.67) 0.39 (0.30) 0.26 (0.34)

Table 1: Shadow removal errors according to 4 attributes (top: results for all (214) test cases;

bottom: results for 177 test cases without detection failures). The non-stared and stared

columns indicate the error score where all pixels in the image are used, and just shadow

area pixels respectively. For each score of each attribute, the images with other predominant

attributes (degree = 3) are not used. Hence, test cases have a strong single bias towards one

of the attributes. ”Other” refers to a set of shadow cases showing no markedly predominant

attributes (degree = 1). ”M” refers to the average score for each category. Standard deriva-

tions are shown in brackets. Method [8] is trained using a large shadow detection data set

from [14]. The best scores are made bold and the second best scores are underlined. As Eo

for the whole image is lower than Eo for the shadow area only – and En for both cases are

similar after shadow removal – Er for the shadow area only is thus generally lower.

Improving on previous work [8, 10], our removal test is based on our data set of 186 cases,

which contains challenging categories for soft, broken and colour shadows and shadows cast
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on strong textured surfaces as well as simpler shadows, plus 28 examples from [8] – resulting

in 214 test cases in total. Each case is rated according to 4 attributes, which are texture, bro-

kenness, colourfulness and softness, in 3 perceptual degrees from weak to strong which were

aggregated by five users. In Table 1, we show combined shadow removal error results from

both automatic and semi-automatic shadow removal algorithms (all 214 cases). However,

as automatic algorithms can often fail in detection – leading to artefacts unfairly biasing the

removal error score – we also show results where we have removed detection failures from

other algorithms – leaving 177 cases in total. This second test therefore concentrates solely

on the quality of removal given accurately detected shadow inputs. In both experiments, our

method shows leading performance across all comparisons.

Tab. 2 shows some typical visual results of shadow removal on various scenarios from our

data set. Our supplementary material shows a wide range of other removal results with higher

resolution images. We therefore encourage readers to examine these figures as compelling

evidence of the strength of our approach. As is the case with all current shadow removal

methods, our method has most difficulty in extreme cases, e.g. Tab. 3, where shadows are

highly broken, colourful, or soft.

Original Yang [13] Guo [8] Gong [7] Ours GT

Tex.

Sof.

Bro.

Col.

Other

Table 2: Comparisons using images from our data set. The table shows our results given test

cases with strong degrees of the corresponding attribute except for ”Other”, which refers to

cases where there is no predominantly strong attribute.
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Orig.

Outp.

Table 3: Our failure cases – where all the leading methods we tested create highly visible

image artefacts and fail to remove the shadow.

5 Conclusions

We have presented an interactive method for fast shadow removal together with a state of

the art ground truth. Our method balances the complexity of user input with robust shadow

removal performance. Our quantitatively-verified ground truth data set overcomes potential

issues relating to mismatched illumination and registration. We have evaluated our method

against several state of the art methods using a thorough quantitative test and shown leading

state of the art performance. Our P-code, evaluation data and scripts will be made public to

the community to encourage future comparison of techniques.
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