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Abstract. This paper introduces a method for reconstructing water 
from real video footage. Using a single input video, the proposed method 
produces a more informative reconstruction from a wider range of possi-
ble scenes than the current state of the art. The key is the combination of 
vision algorithms and physics laws. Shape from shading is used to capture 
the change of the water’s surface, from which a vertical velocity gradient 
field is calculated. Such a gradient field is used to constrain the tracking 
of horizontal velocities by minimizing an energy function as a weighted 
combination of mass-conservation and intensity-conservation. Hence the 
final reconstruction contains a dense velocity field that is incompressible 
in 3D. The proposed method is e�cient and performs consistently well 
across water of di↵erent types. 

1 Introduction 

In recent years, fruitful progress has been made in reconstructing complex ob-
jects and scenes from images or videos, for example: faces [6], human bodies [1] 
hair [16], trees [21] [20] and fluids [2]. Among them, water brings unique chal-
lenges, a solution to which is of great interest to many research areas such as 
mechanical engineering [19] and computer graphics [23]. Traditional vision tech-
niques are found to work less well in these cases. Major challenges include: a 
water surface generally lacks visually salient features; its complex dynamics, in-
cluding topological changes, yield extreme di�culties for tracking; ground truth 
data is di�cult to acquire – even active acquisition systems such as laser scanners 
will fail due to the over complicated reflection and refraction conditions. 

This paper advances the current art of image based water reconstruction to 
work with a single input video captured in ordinary outdoor conditions, where 
the water is of a large scale and appears opaque. In these cases the traditional 
refraction and reflection based techniques as well as sophisticated experimental 
setups are impractical. 

The proposed method is not only more flexible than previous methods of 
modelling the surface geometry but also reconstructs extra information in the 
form of a dense grid of 3D velocities. The key is the combination of shape from 
shading and optical flow using a physical constraint. First, shape from shading is 
used to estimate the geometry of the water surface for each frame. Although this 
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is an unusual method for reconstructing reflective and refractive materials, we 
will demonstrate in our experiments that the opaque appearance of large bodies 
of water outdoors, and our choice of shape from shading algorithm cause this 
method to produce a convincing result (figure 2). We then produce a vertical 
velocity gradient field calculated from the change of the recovered surface over 
time. This vertical gradient is coupled with the law of mass-conservation to 
constrain the tracking of horizontal velocities on the water surface. The final 
vertical velocity is recovered from the tracked horizontal velocities, producing 
the dense 3D velocity field. 

Compared to the existing state of the art, the proposed method has the 
following advantages: 

– It is designed to work with a single input video recorded by an ordinary 
capturing device. All the example videos are recorded by a digital video 
camera in an outdoor environment, where the water is of a large scale and 
appears opaque. 

– It is more informative as not only the surface geometry is recovered, but so 
is a dense 3D velocity field. 

– The recovered velocities comply with the conservation of mass in 3D. 
– It is practically e�cient and stable. No complex optimization schemes are 

used and experiments show it performs consistently well across di↵erent 
scenarios with fixed parameters. 

(a) (b) (c) 

Fig. 1. The proposed single video based water reconstruction method. a: One frame 
from the input video. b: The fluid surface is recovered using combined shape from 
shading and optical flow. The surface geometry is demonstrated in 3D. c: Details of 
the 3D velocities and geometry inside the yellow box shown in (a). All height field 
results are normalised to [0, 1] for visualization. 

2 Related Work 

The proposed method aims to reconstruct both the geometry and the velocity 
of the water. Two major research areas will be reviewed: water surface geometry 
reconstruction and fluid tracking. 
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2.1 Surface Geometry Reconstruction 

Various types of physical properties have been used to reconstruct the water 
surface geometry, for example, refraction [13, 3, 12] and reflection [23], as well as 
others [10] [8]. 

Murase [13] reconstructs a water surface from the apparent motion of a re-
fracted pattern. The distortion of an underwater pattern is tracked by opti-
cal flow, from which the water’s surface normal is calculated using a refraction 
model. The water surface is then recovered by 2D integration of the surface nor-
mal. Balschbach et al. [3] also use a refraction approach, but based on a shape 
from shading technique where multiple illuminations are used to better deter-
mine surface gradients. Morris and Kutulakos [12] show that refractive index is 
not indispensable by assuming light is refracted only once. Their system recon-
structs the water surface by minimizing the refractive disparity. These refraction 
based methods are generally called “shape from distortion” and they work well 
for transparent water. The disadvantages are they can not work with opaque 
liquids and specially designed devices are required to capture the distortion of a 
known pattern being located underneath the surface of the water. These methods 
are not suitable for outdoor conditions where water often appears opaque. 

Shape from stereo techniques have been explored to reconstruct liquids that 
are opaque. Wang et al. [23] dye water with white paint and light patterns are 
projected onto its surface. A depth field is first reconstructed by dense recon-
struction and then refined using physically-based constraints. This method shows 
very accurate reconstructions of surface details. Ihrke et al. [10] dissolve the 
chemical Fluorescein in the water and measures the thickness of the water from 
the amplitude of the emitted light. The visual hull of the water surface is then cal-
culated by utilizing weighted minimal surfaces using the thickness measurements 
as constraints. Hilsenstein [8] reconstructs water waves from thermographic im-
age sequences acquired from a pair of infrared cameras. As a viable approach, 
infrared stereo reduces the problem associated with transparency, specular re-
flection and lack of texture at visible wavelengths. These techniques all require 
sophisticated equipment and complex experimental setups. 

Missing from the literature is a solution for reconstructing water surfaces from 
a single video captured in an ordinary outdoor environment, as demonstrated by 
Figure 1 (a). In this case, nothing can be put under or dissolved in the water. The 
water is almost opaque, where refraction based approaches are impracticable but 
reflection based approaches tend to gain performance. This paper demonstrates 
shape from shading is able to perform consistently well across di↵erent types of 
such water surfaces. 

2.2 Fluid Tracking 

Although surface geometry is important, it does not contain the full set of water 
properties. It only describes the change of the water surface height over time, 
while horizontal velocities are missing. Various types of trackers are proposed to 
acquire the fluid flow field. 
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Traditional 2D tracking algorithms such as Horn-Schunck optical flow [9] are 
found to perform less well for water where the conservation of intensity rarely 
holds. As an improvement, Nakajima et al. [14] propose an energy function 
as a weighted combination of conservation of intensity, conservation of mass, 
and momentum equations. The resulting flow complies with physical properties 
of fluids in 2D. Doshi and Bors [5] use a robust kernel which adapts to the 
local data geometry in the di↵usion stage of the Navier-Stokes formulation. The 
kernel ensures that smoothing occurs along the structure of the motion field 
while maintaining the general optical flow structure and the main optical flow 
features. Sakaino [18] proposes a method to model abrupt image flow change. 
Flow is modelled using a number of base waves and their coe�cients are found 
to match the input sequence. Although these methods significantly improve 2D 
flow tracking, their physical constraints are not designed to work in 3D. 

Papadakis et al. [15], and Heas and Memin [7] estimate 3D motions of a 
stratified atmosphere by minimizing an object function that describes the dy-
namics of an interacting stack of atmospheric layers. Li [11] treats the image as a 
wavefront surface and derives a general brightness constraint to model brightness 
variation in terms of fluid dynamics of the velocity potential. The gradient of the 
3D velocity potential describes the actual motion flow. The general brightness 
constraint separates the flow dynamic from the brightness variation, hence one 
can replace the fluid dynamics model with other physical models and reuse the 
same solution process. 

The method proposed in this paper recovers 3D velocities, producing a more 
informative reconstruction than previous 2D tracking algorithms. Compared 
with [15, 7, 11] the novelty of the proposed method is the combination of shape 
from shading and optical flow. Surface information acquired from the former is 
used as a prior to improve the performance of the latter, where physical rules 
are incorporated. The method is e�cient and performs consistently well across 
di↵erent types of water captured in an outdoor environment. 

3 Reconstructing 3D Mass-Conserved Water 

The proposed method reconstructs the surface geometry and a dense 3D veloc-
ity field of water captured with a single video camera. The key is the law of 
mass-conservation, which is used as a physical link between the change of the 
surface height and the horizontal velocities. The proposed method uses shape 
from shading to acquire the change of surface height over time. It is then used 
as a prior to constrain the optical flow tracking. The final water surface will be 
reconstructed back from the horizontal velocities. 

The rest of this section will first introduce the water model and the law of 
mass-conservation; then demonstrate shape from shading in acquiring surface 
geometry for a wide range of water; the physically constrained fluid tracking is 
explained at the end. 



5 Title Suppressed Due to Excessive Length 

3.1 Conservation of Mass 

A height field h(x, y, t) is used to represent the water surface at time t. A vector 
u = (u, v, w) is used to represent the 3D velocity for each point on the surface. 
The law of mass-conservation constrains the 3D divergence of the velocity to 
zero, which leads to 

@w @u @v 
@z 

= �( 
@x 

+ 
@y 

) (1) 

We first shown how the vertical velocity w can be approximated from the di-
vergence of the horizontal velocities (u, v). By assuming the horizontal velocities 
do not vary along the z-direction, the right-hand side of this equation does not 

@w depend on z, so 
@z is a constant along the z-direction. This means the vertical 

velocity w is a linear function of the water depth z. The velocity at the bottom 
of the water comes from the boundary condition u n = 0 where n is the normal · 
of the water bed. By further assuming a flat bottom, we have n = (0, 0, 1) hence 

@w 
w needs to be zero to satisfy the boundary conditions. Integrating 

@z along 
z-direction gives the vertical velocity: 

@w @u @v 
w = h = �h( + ) (2)

@z @x @y 
The vertical velocity can also be calculated from the material derivative of 

the surface height with respect to time: 

dh @h @h @h 
w = = u + v + (3)

dt @x @y @t 
Here we simplify the fluid dynamic by not considering the advection part 

@h @h 
u + v. Hence the Eulerian measurement of the surface change is used as an 

@x @y 
approximation of the vertical velocity w ⇡ @h = h(x, y, t + 1) � h(x, y, t). This 

@t 
significantly simplifies the later optimization process and experiments show the 
results are generally plausible. 

The evolution of water surface can then be directly linked to horizontal ve-
locities via: 

@u @v 
h(x, y, t + 1) � h(x, y, t) = �h(x, y, t)( + ) (4)

@x @y 
Accurate horizontal velocities are expected to satisfy the surface change over 

time based on equation 4. The rest of this section first demonstrates shape from 
shading can be used to acquire a prior for water surface and then explains how 
to use such a prior to improve the tracking of horizontal velocities. 

3.2 Recovering The Water Surface Using Shape from Shading 

Shape from shading deals with the recovery of shape from a gradual variation 
of shading in the image, see Zhang et al. [24] for a detailed survey. A general 
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assumption made by shape from shading techniques is that the scene follows 
the Lambertian model, in which the grey level at a pixel in the image depends 
on the light source direction and the surface normal. For specular surfaces, this 
assumption holds less well and more complex reflection/refraction models [4] are 
expected to be needed. 

Although water is expected to be a highly reflective and refractive substance, 
we show that shape from shading can provide a high quality reconstruction of an 
outdoor water surface. Figure 2 shows eight scenes captured in ordinary outdoor 
conditions with their shape from shading recovered surfaces underneath (using 
Tsai et al.’s method [22]). One important reason for shape from shading to 
perform so well is that the water in these scenes appears visually opaque because 
of its depth and the suspension of dirt, mud and air. Also the particular shape 
from shading algorithm [22] used here is reported to have good performance with 
specular surfaces. 

Fig. 2. Despite distortions from strong reflections (bottom right), experiments show 
shape from shading performs consistently well in recovering water surfaces of di↵erent 
types. 

Our experiments also show shape from shading can work for dynamic water 
with very few adaptations. Videos are low-pass filtered to remove noise, such 
as extreme bright or dark points. A height field h(x, y, t) is then individually 
recovered for each frame t to represent the water surface. For a T -frames video P

N P
M1of resolution M by N , the average height of each surface 

MN i=1 j=1 h(i, j, t) 
is rectified to the same level P

T P
N P

M1 
h(i, j, k) to remove the a↵ect of global luminance 

TMN k=1 i=1 j=1 
change: 
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h

0(x, y, t) = h(x, y, t) � 
N M T N M

h(i, j, t) + h(i, j, k) (5)
MN TMN 

X 

i=1 j=1 i=1 j=1
k=1 

1 1 

An example is shown in figure 3, where the shape from shading surface suc-
cessfully follows the movement of the water in the video. However, surface ge-
ometry is not a completely informative description for water, but can be used 
to constrain optical flow to obtain the velocities of the surface using the law of 
mass conservation. 

(a) (b) (c) 

Fig. 3. Experiments show shape from shading is able to reconstruct the change of the 
fluid surface over time. a - c: di↵erent frames in the sequence and their shape from 
shading reconstructions. 

3.3 Combined Shape from Shading and Optical Flow 

The general idea is to use shape from shading water surfaces to constrain the 
tracking of horizontal velocities based on the conservation of mass. As explained 
in section 3.1, the vertical velocity w is approximated as the Eulerian derivatives 
of the shape from shading surfaces with respect to time. Its gradient along the 
z-direction @w is consequently calculated as h(x,y,t+1)�h(x,y,t) . The horizontal 

@z h(x,y,t) 
velocities (u, v) are then whatever it takes to make the water incompressible. 

The objective energy function is a weighted combination of intensity-conservation, 
mass-conservation and smoothness: 

E = [(I
x

u + I
y

v + I
t

)2 + ↵2(|ru|2 + |rv|2) + �2(u
x + v

y + w
z

)2]dxdy (6) 

(I
x

u + I
y v + I

t

)2 and |ru|2 + |rv|2 are the intensity-conservation term and 
smoothness terms from the Horn-Schunck [9] optical flow. (u

x + v
y + w

z )2 is 
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the mass-conservation term that describes the 3D divergence of the velocity. In 
practice, w is calculated by subtracting the current shape from shading surface 

wfrom its successor. Then w
z is calculated as 

h . The following Euler-Lagrangian 
equations are used to minimize the objective function 6: 

I

x

(I
x

u + I
y

v + I
t

) � ↵24u � �2(u
xx + v

xy + w
xz

) = 0 (7) 
I

y

(I
x

u + I
y

v + I
t

) � ↵24v � �2(u
xy + v

yy + w
yz

) = 0 (8) 

In practice 4u, 4v, u
xx and v

yy are approximated numerically using fi-
nite di↵erences: ue(x, y) � u(x, y) = u(x�1,y)+u(x+1,y)+u(x,y�1)+u(x,y+1) � u(x, y),4 
ve(x, y)�v(x, y) = v(x�1,y)+v(x+1,y)+v(x,y�1)+v(x,y+1) �v(x, y), u(x, y)�u(x, y) = 4 
u(x�1,y)+u(x+1,y) �u(x, y), v(x, y)�v(x, y) = v(x,y�1)+v(x,y+1) �v(x, y). The La-2 2 
grange multipliers ↵2 and �2 are fixed to 1000 across all scenes. The solution of 
equations 7 and 8 is found using the Gauss Seidel method. The resulting hori-
zontal velocity (u, v) is then used to calculate the final vertical velocity w and 
the change of the water surface using equation 4. Due to the mass conservation 
constraint the surface produced from these new vertical velocities is very similar 
to the shape from shading surfaces, which have been shown to model the real 
water dynamics well. 

4 Experiment 

To evaluate the quality of our method we compare our method with several state 
of the art flow estimators on di↵erent water scenes. Our hypothesis is that our 
method will track the horizontal flow of the fluid more plausibly than previous 
methods, the major improvement being that our result conforms with the move-
ment of fluid in 3D. We compare both the appearance of the tracked horizontal 
velocities alone, and the surface reconstructed using mass-conservation. 

This paper chooses the classical Horn-Schunck [9] optical flow and the more 
contemporary physics-based flow tracker [14] to compare with. These two meth-
ods, like ours, both minimize an energy function as the weighted combination of 
some energy terms such as the intensity-conservation term and the smoothness 
term. The di↵erence is Nakajima et al.’s [14] method contains extra terms for 2D 
momentum equations and 2D mass-conservation; the proposed method in this 
paper contains an extra term for mass-conservation in 3D and Horn-Schunck [9] 
flow does not employ any physical constraint. In this paper, same weight coe�-
cients (Lagrangian multipliers) are used to combine di↵erent energy terms and 
they are fixed across all the experiment sequences. 

Figure 4 shows the horizontal flow fields acquired using the three di↵er-
ent methods. The flow produced by the Horn-Schunck [9] method clearly over-
smooths the velocities and only captures the global flow of the di↵erent image 
regions. The flow field produced by Nakajima et al. [14] improves on this but 
still oversmooths the finer details of the water movement. As demonstrated, our 
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Horn-Schunck [9] Nakajima et al. [14] Our Method 

Fig. 4. Results of di↵erent methods. Our method successfully captures the sharp ve-
locity features, while previous methods tend to over smooth the flow. 

method manages to create a flow field which captures the detailed sharp features 
of the flow successfully. 

We have produced reconstructions of the surface geometry using the velocities 
by both the Horn-Schunk [9] and Nakajima et al. [14] methods. Figure 5 shows 
the surface geometries produced using these vertical velocities and an initial 
height at frame 1 produced by shape from shading. This experiment evaluates 
how well the velocities produced by each algorithm comply with the movement 
of fluid in 3D. Our results show that both methods tend to “halt” the water 
surface due to the lack of vertical velocity. As error accumulates in time, the 
water surface drifts away from its real appearance in the video. These results 
are due to the lack of a 3D physical constraint and therefore the vertical velocities 
calculated using the 3D law of mass-conservation are incorrect. 

The robustness of the proposed method is tested on a wide range of water 
sequences. 40 water sequences from the Dyntex database [17] are used. These 
include water of calm, wavy and turbulent motion. The sequences are filmed 
outdoors with an ordinary digital video camera with a fixed tripod. A common 
property of these videos is the water generally appears opaque which allows 
the shape from shading surface a veridical prior to constrain the optical flow 
tracker. Results show the proposed method performs consistently across these 
test sequences. Some of the reconstructed water surfaces and velocity fields are 
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Original frame Horn-Schunck [9] Nakajima et al. [14] Our Method 

Fig. 5. Results of reconstructions produced from horizontal velocities given by di↵erent 
flow estimators. The Horn-Schunck and Nakajima reconstructions are “halted” and 
noisy, while the proposed method is significantly better. 

shown in figure 6. The fluid dynamics caused by objects interfering, such as an 
animal swimming, can also be well captured. 

An advantage of the proposed method is its e�ciency. Solving equations 7 
and 8 is a linear optimization process without any extra complexity compared to 
the classic Horn-Schunck [9] optical flow. A C++ implementation of the whole 
system, including shape from shading and flow estimation, is able to process over 
10 frames of resolution 352 ⇥ 288 per second on an Intel quad-core processor, 
which makes realtime applications practically possible. 

There are several limitations of the proposed method. First, it strongly de-
pends on the surface prior acquired from shape from shading. Although it has 
been shown in this paper that shape from shading works consistently well over a 
wide range of water that has opaque and Lambertian properties, failure modes 
can appear when the water is transparent or highly specular. In this case the 
refraction/reflection will distort the reconstructed surface. A good example is 
shown in the last picture of figure 2 where the reflection of the trees yield valleys 
on the surface. Currently the proposed method simply uses a low-pass filter to 
remove the extreme bright or dark pixels in the image, this can be replace by 
better specular/shadow removal methods. Also, the height field representation 
works e�ciently well for calm water surfaces but does not well describe complex 
scenes such as splashing and breaking waves. In these cases a more sophisticated 
fluid representation is needed to handle the topological change. 

In summary an important characteristic of the reconstruction is it is physi-
cally sound, as the velocity field complies with the conservation of mass in 3D. 
Compared to previous flow estimators our method captures sharp velocity fea-
tures and reconstructs a water surface that successfully models the change of 
the water surface geometry. Our method works fully automatically and requires 
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(a) (b) (c) 

Fig. 6. Results of di↵erent water surfaces. a: the original input video frame. b: the 
mass-conserved surface reconstructions. c: 3D velocities and geometry of the surface 
inside the yellow box shown in (a). Each pair of results are two frames from the same 
video sequence. 

only a single input video. It has been tested on a wide range of scenes and found 
to perform consistently (figure 6). 

5 Conclusion 

This paper studied the problem of image-based water reconstruction for a single 
input video that is captured in ordinary outdoor conditions. In this case the 
water is of a large scale, appears opaque and traditional refraction and reflection 
based reconstruction techniques are impractical. One important discovery is the 
capability of shape from shading to recover di↵erent water surfaces of this kind. 
Consistent performance is demonstrated by experimenting on a wide range of 
scenes. Based on this discovery, the paper proposes a method for reconstructing 
water by combining shape from shading and optical flow. It essentially uses 
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the vertical velocity acquired from shape from shading to constrain the optical 
flow tracking of horizontal velocities. The advantages of the proposed method 
are: 1) it works fully automatically and requires only basic input resources; 
2) the reconstruction is more informative as it contains not only the surface 
geometry profile but also a 3D velocity field; 3) the recovered velocities are mass-
conserved in 3D; 4) it is e�cient and generally stable, as tested by a wide range of 
water. We also discussed several failure modes where the water is highly specular. 
Interesting future avenues include finding better solutions for removing shadows 
and highlights from the water surface and integrating more sophisticated fluid 
dynamics, for example the full Naiver-Stokes equations. 
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17. Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex : a comprehensive database of dy-
namic textures. In: Pattern Recognition Letters. (2010) 

18. Sakaino, H.: Motion estimation method based on physical properties of waves. In: 
Proceedings of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition. (2008) 1–8 

19. Shand, T., Shand, R., Bailey, D., Andrews, C.: Wave deformation in the vicinity of 
a long ocean outfall at wanganui, new zealand. In: Coasts and Ports Australasian 
Conference. (2005) 173–178 

20. Tan, P., Fang, T., Xiao, J.X., Zhao, P., Quan, L.: Single image tree modeling. 
Proceedings of ACM SIGGRAPH Asia 27 (2008) 1–7 

21. Tan, P., Zeng, G., Wang, J.D., Kang, S.B., Quan, L.: Image-based tree modeling. 
In: Proceedings of ACM SIGGRAPH, New York, NY, USA, ACM (2007) 87 

22. Tsai, P., Shah, M.: Shape from shading using linear approximation. Image and 
Vision Computing 12 (1994) 487–498 

23. Wang, H.M., Liao, M., Zhang, Q., Yang, R.G., Turk, G.: Physically guided liquid 
surface modeling from videos. In: Proceedings of ACM SIGGRAPH. (2009) 1–11 

24. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape from shading: A survey. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 21 (1999) 690–706 


