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Abstract We start from the Forum presentation of first order linear logic to design an

equivalent system for which proof search is highly structured. We restrict formulae to a

language of clauses and goals, without losing expressivity, in such a way that formulae

have the same structure of Forum sequents. This means having a very big generalised

connective that suffices for all of linear logic. We can then design a system with only

two big rules, a left one and a right one. The behaviour of such system in proof search is

operationally interesting and makes it suitable for further semantic investigations. We

test the mutual harmony of the new rules by showing a cut elimination theorem.

1 Introduction

Forum [9] is a presentation of linear logic which only produces uniform proofs. This
guarantees that a sensible operational interpretation of proof search is possible. Sur-
prisingly, Forum is complete for linear logic; this contrasts with the situation in
classical logic, where a complete presentation that only produces uniform proofs is
not possible. Given the linguistic flexibility of linear logic, i.e., its ability of inter-
preting a broad range of computational situations, Forum represents a major step
forward towards practical applications.

This research is motivated by the search for adequate operational models of
Forum, especially behavioural models like labelled event structures, which describe
causal relations. These are particularly important for the domains of applications of
Forum, namely the modelling of computations in concurrency and planning.

A proof in Forum mainly consists of small, deterministic steps, corresponding
to applying each of several inference rules. This determinism is, of course, not
a surprise, since Forum has been designed precisely for the purpose of reducing
and isolating non-determinism. One soon realises that, in order to obtain sensible
models, one must abstract away from situations in which several steps occur one
after another and no choice at all is actually possible: when no choice is available,
causality becomes trivial and uninteresting. It is of course possible to make this
abstraction after a proof is produced, but it is desirable to design a system that
makes the abstraction since the beginning. In other words, one wonders whether it
is possible to carry Forum one step ahead: making further restrictions that, without
losing expressivity, provide the right level of abstraction directly in the proof theory.

To get Forum, Miller imposed certain restrictions on the sequents, inference
rules, and possible connectives of linear logic, but he left formula building free. In
this paper we restrict the class of allowed formulae, along lines already imagined
by Miller in [9], and we design correspondingly a system called G-Forum. By doing
this, we have that formulae drive the construction of proofs in a very structured
way, which allows us to individuate big chunks of derivations that essentially behave
in a deterministic way: these will be the building blocks of our desired behavioural
semantics. The restriction of formulae makes them isomorphic to the sequents in
Forum. Of course, in order to claim that this is “good” proof theory, one has to



test the internal harmony of G-Forum. We do it the classical way: we prove a cut
elimination theorem for the new system, and we show that it is not necessary to
resort to Forum in the intermediate steps of the cut elimination procedure: G-Forum
is enough, meaning that the new granularity of rules genuinely corresponds to what
we can consider a generalised connective.

We leave the development of the behavioural semantics to a future paper (the
reader can consult [6] for some preliminary results); in this paper we limit ourselves
to defining G-Forum and show cut elimination for it. In sect. 2 we give a quick
account of Forum, then we develop G-Forum in sect. 3.

2 First Order Forum

We deal with first order formal systems, and the following conventions apply.

2.1 Definition First order variables are denoted by x, y and z; terms are denoted
by t, atoms by a, b, c, . . . , a(t1, . . . , th), b(. . .), c(. . .), . . . . Sequences are denoted in
vector notation, as in ∀~x.a(~t). Formulae are denoted by F and other letters which
will be introduced later on. Formulae are considered equal under α-conversion.

This work is founded on linear logic; we are mainly interested in its first order
sequent calculus presentation. We refer to the literature for details, especially to [5].

2.2 Definition The formal system of full first order linear logic, in its Gentzen’s
sequents presentation, and its language, are both denoted by FOLL. Formulae in
FOLL are freely built from first order atoms and constants 1, ⊥, >, 0 by using binary

connectives �, O, N, �, (, modalities !, ?, negation ⊥ and the quantifiers ∀ and ∃.
Constants 1, ⊥ and connectives �, O and ( are called the multiplicatives; >, 0, N

and � are called the additives. Equivalence is written ≡. In linear logic F ≡ F ′ iff
(F ( F ′) N (F ′ ( F ) is provable.

Intuitionistic implication ⇒ admits the well-known decomposition F ⇒ F ′ ≡
!F ( F ′; we can consider ⇒ part of the calculus.

2.3 Definition The binary connective ⇒ is introduced such that F ⇒F ′ is equiv-
alent to !F ( F ′.

2.4 Definition Multiplicative connectives, except (, take precedence over addi-
tive ones; implications are the weakest connectives; modalities and quantifiers are
stronger than binary connectives; negation takes precedence over everything. Impli-
cations associate to the right. Whenever possible, we omit parentheses.

For example, !∀x.a⊥(bNcOd⇒e stands for
(
!(∀x.(a⊥))

)
(

(
(bN(cOd))⇒e

)
.

We briefly introduce the Forum formal system. The presentation corresponds
to the one in [8], restricted to the first order case and with some minor modifications.
An alternative and more detailed exposition can be found in [9].

2.5 Definition The language of first order Forum is the subset of FOLL freely
built over atoms and the constants ⊥ and > by use of the binary connectives O,
N, ( and ⇒ and of the quantifier ∀. We will say “Forum” instead of “first order
Forum.” Generic Forum formulae are denoted by A and B.

So, Forum presents fewer connectives than FOLL, by getting rid of some of



the redundant ones. It is not difficult to prove the following equivalences in FOLL:

1 ≡ ⊥⊥,

F � F ′ ≡ (F⊥
O F ′⊥)⊥,

!F ≡ (F ⇒⊥)⊥,

0 ≡ >⊥,

F � F ′ ≡ (F⊥
N F ′⊥)⊥,

?F ≡ F⊥ ⇒⊥,

∃x.F ≡ (∀x.F⊥)⊥,

F⊥ ≡ F ( ⊥.

Then, one can equivalently write any FOLL formula into the Forum language.
2.6 Definition Sequents are expressions of the form[

Ψ
Γ

]
A `

[

Λ

]
or

[
Ψ
Γ

]
`

[
Ξ
Λ

]
,

where all formulae are Forum formulae and Ψ is a finite multiset of formulae (the
left classical context or classical program); Γ is a finite multiset of formulae (the left

linear context or linear program); A is a formula (the left focused formula); Ξ is a
finite sequence of formulae (the right linear context); Λ is a finite multiset of atoms
(the atomic context). Γ , Ξ and Λ are collectively referred to as the linear context. Ψ

and Γ together are called the program. In the following Ψ , Γ , Ξ and Λ respectively
stand for multisets, multisets and sequences of formulae and multisets of atoms. We
write “Γ,A”, or “A,Γ”, instead of “Γ ]{A}+” and “Γ, Γ ′” instead of “Γ ]Γ ′”, where
] is multiset union. Sequents are denoted by Σ. Sequents where no focused formula
is present and Ξ is empty are called state sequents, are written[

Ψ
Γ

]
`

[

Λ

]

and are denoted by S and R.

2.7 Definition An inference rule is an expression of the form
Σ1 . . . Σh

r
Σ

, where

h > 0, sequents Σ1, . . . , Σh are the premises of the rule, Σ is its conclusion and r

is the name of the rule. An inference rule with no premises is called an axiom.
2.8 Definition Let Forum be the first order proof system defined by inference rule
schemes in fig. 1. Structural rules are: i (initial), dL (decide linear), dC (decide clas-

sical), a (atom). Logical rules, divided into left and right ones, are: ⊥L, ⊥R (bottom);
>R (top, there is no left rule); OL, OR (par); NLL, NLR, NR (with); (L, (R (linear

implication); ⇒L, ⇒R (intuitionistic implication); ∀L, ∀R (universal quantification).
Consider proofs in Forum in a bottom-up reading. In absence of a left focused

formula, the right linear context is acted upon by right rules until it is empty; at
that point a formula becomes focused, in a dL or dC rule. Then left rules only are
applicable, until new formulae reach the right linear context, through (L and ⇒L

rules. Proofs in Forum are said to be uniform [8, 9, 10].
Our system’s major differences with Forum as presented in [8] are: 1) our

classical context is a multiset while in [8] it is a set; 2) our atomic context is a
multiset while in [8] it is a sequence. These differences do not affect provability (and
uniformity of proofs), as it can be proved trivially.

Representing derivations as directed trees whose nodes are sequents is typo-
graphically advantageous, especially in the cut elimination proof. The direction of
the arrows corresponds to the tree growth during the search for a proof. It should
be clear that there is no difference between this notation and the usual one.



Structural Rules

i [
Ψ

]

a `

[

a

]

[

Ψ
Γ

]

A `

[

Λ

]

dL [

Ψ
Γ, A

]

`

[

Λ

]

[

Ψ, A
Γ

]

A `

[

Λ

]

dC [

Ψ, A
Γ

]

`

[

Λ

]

[

Ψ
Γ

]

`

[

Ξ
a, Λ

]

a [

Ψ
Γ

]

`

[

Ξ, a
Λ

]

Left Rules

⊥L [

Ψ
]

⊥ `

[ ]

[

Ψ
Γ

]

A `

[

Λ

] [

Ψ
Γ ′

]

B `

[

Λ′

]

OL [

Ψ
Γ, Γ ′

]

A O B `

[

Λ, Λ′

]

[

Ψ
Γ

]

A `

[

Λ

]

NLL [

Ψ
Γ

]

A N B `

[

Λ

]

[

Ψ
Γ

]

B `

[

Λ

]

NLR [

Ψ
Γ

]

A N B `

[

Λ

]

[

Ψ
Γ

]

`

[

A
Λ

] [

Ψ
Γ ′

]

B `

[

Λ′

]

(L [

Ψ
Γ, Γ ′

]

A ( B `

[

Λ, Λ′

]

[

Ψ
]

`

[

A
] [

Ψ
Γ

]

B `

[

Λ

]

⇒L [

Ψ
Γ

]

A ⇒ B `

[

Λ

]

[

Ψ
Γ

]

A[t/x] `

[

Λ

]

∀L [

Ψ
Γ

]

∀x.A `

[

Λ

]

Right Rules
[

Ψ
Γ

]

`

[

Ξ
Λ

]

⊥R [

Ψ
Γ

]

`

[

⊥, Ξ
Λ

]

>R [

Ψ
Γ

]

`

[

>, Ξ
Λ

]

[

Ψ
Γ

]

`

[

A, B, Ξ
Λ

]

OR [

Ψ
Γ

]

`

[

A O B, Ξ
Λ

]

[

Ψ
Γ

]

`

[

A, Ξ
Λ

] [

Ψ
Γ

]

`

[

B, Ξ
Λ

]

NR [

Ψ
Γ

]

`

[

A N B, Ξ
Λ

]

[

Ψ
Γ, A

]

`

[

B, Ξ
Λ

]

(R [

Ψ
Γ

]

`

[

A ( B, Ξ
Λ

]

[

Ψ, A
Γ

]

`

[

B, Ξ
Λ

]

⇒R [

Ψ
Γ

]

`

[

A ⇒ B, Ξ
Λ

]

[

Ψ
Γ

]

`

[

A[y/x],Ξ
Λ

]

∀R [

Ψ
Γ

]

`

[

∀x.A, Ξ
Λ

]

where y is not free in the conclusion

Fig. 1 The first order Forum proof system

2.9 Definition To every instance of an inference rule
Σ1 . . . Σh

r
Σ

, when h > 0
an elementary derivation

Σ1 · · · Σh

Σ

r r

corresponds, i.e. a labeled directed tree whose root is labeled Σ, whose leaves are
labeled Σ1, . . . , Σh and whose arcs are labeled r; when h = 0 the corresponding



◦

[ ]

b `

[

b

]

i

[ ]

a `

[

a

]

[ ]

a `

[

a

] [ ]

b O a `

[

a, b

]

OL OL

[ ]

a O (b O a) `

[

a, a, b

]

OL
OL

Fig. 2 Example of derivation

elementary derivation is
◦

Σ

r ,

where ◦ is a mark distinct from every sequent. Derivations are non-empty, finite
directed trees whose root is labeled by a sequent and whose other nodes are labeled by
sequents or ◦ marks and such that every maximal subtree of depth 1 is an elementary
derivation. Derivations are denoted by ∆. Given a derivation ∆, we say that ∆′

is a subderivation of ∆ if ∆′ is a derivation and a subtree of ∆. ∆′ is a principal

subderivation of ∆ if it is a subderivation of ∆ and the roots of ∆ and ∆′ coincide.
Given ∆, its premises are the labels of the leaves of ∆ other than ◦; its conclusion

is the sequent labeling the root of ∆. The multiset of premises of ∆ is indicated by
∆̃. A sequent Σ is a derivation (of depth 0) whose premise and conclusion is Σ. A
derivation ∆ such that its premises are Σ1, . . . , Σh and its conclusion is Σ can be
represented as

Σ1 · · · Σh

∆

Σ

.

Sometimes the name of the derivation is not shown. If ∆ is the derivation

~Σ1

∆1

Σ1 · · ·

~Σh

∆h

Σh

Σ

r r

,

where h ≥ 0, we define its depth d(∆) as max {d(∆1), . . . ,d(∆h)} + 1, where, for
every sequent Σ, it holds d(Σ) = d(◦) = 0. If ∆ has no premises we say that ∆

is a proof. Proofs are denoted by Π. We say that Π proves (or is a proof of ) its
conclusion. We say that a formula A is provable in Forum, or that Forum proves A,

if a proof of

[ ]
`

[
A

]
exists.

The premises of the derivation in fig. 2 are
{[ ]

a `

[

a

]
,

[ ]
a `

[

a

]}
+ and

its conclusion is

[ ]
a O (b O a) `

[

a, a, b

]
. This derivation can be completed into a

proof by applying two initial rules to its premises.



Arcs are not independent in the growth process of a derivation: all arcs prop-
agating from a node correspond to the application of the same inference rule.

By looking at fig. 1 it is clear that if we make the classical context a set (as
Miller does), derivability is not affected. In fact, the only impact is on the ⇒R

rule, but things do not change, because the classical context is implicitly subject to
weakening in all axioms.
2.10 Theorem Every Forum formula is provable in Forum if and only if it is prov-

able in FOLL. (Miller [8, 9])

3 Derivations at a Higher Level of Abstraction

Consider a formula δ = G1⇒· · ·⇒Gk′′ ⇒H1 ( · · ·(Hk′ (a1 O · · ·Oak. In Forum,

in a bottom-up construction of a derivation, from

[ ]
`

[
δ
]

we are always led to

the state sequents

[
G1, . . . , Gk′′

H1, . . . ,Hk′

]
`

[

a1, . . . , ak

]
. Let us call clauses formulae like δ,

where formulae Gi and Hj (goals) are of the form ∀~x.(δ1 N · · · N δh), and where in
the N conjunction only clauses are allowed.

In this section we derive a proof system equivalent to FOLL. The new proof
system is in fact the old Forum proof system seen at a coarser abstraction level:
rules are essentially macro derivations composed of many Forum rules, and the only
formulae allowed are goals (and clauses).

3.1 Goals and Clauses

We define goals and clauses, which are Forum formulae of a constrained shape; then
we show that their language is equivalent to Forum and then to FOLL.
3.1.1 Definition Goals and clauses are recursively defined this way:

1) A goal is a formula of the form

∀~x.(δ1 N · · · N δh),

where ~x can be empty, h > 0 and every δi is a clause. When h = 0 a goal is
∀~x.>.

2) A clause δ is a formula of the form

G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak,

where k, k′, k′′ > 0, formulae Gi and Hi are goals and formulae ai are atoms.
Goals Gi are called the classical premises of δ, goals Hi are its linear premises

and a1 O · · · O ak is the head of the clause. We define hd(δ) = {a1, . . . , ak}+,
lp(δ) = {H1, . . . ,Hk′}+ and cp(δ) = {G1, . . . , Gk′′}+. When k = 0 the head
is ⊥. When k′ = 0 and k′′ = 0 clauses assume the following special forms,
respectively:

G1 ⇒ · · · ⇒ Gk′′ ⇒ a1 O · · · O ak and

H1 ( · · · ( Hk′ ( a1 O · · · O ak.

Goals are denoted by G and H, clauses by δ and γ.
Clearly, a clause is also a goal.



3.1.2 Theorem Every formula in FOLL is equivalent to a goal in Forum.
Proof We show that, taken any formula in Forum, we can exhibit an equivalent goal.
We use the following absorption equivalences:

1) F O ⊥ ≡ F ;

2) F O > ≡ >;

3) F N > ≡ F .

We also use the following equivalences:

4) F O (F ′
N F ′′) ≡ (F O F ′) N (F O F ′′);

5) ∀x.F O F ′
≡ ∀x.(F O F ′), whenever x is not free in F ′ and

6) ∀x.F N F ′
≡ ∀x.(F N F ′), whenever x is not free in F ′.

Let A be a formula in Forum: the proof is by induction on its structure. The base cases
being trivial, consider given B and B′; by the induction hypothesis we suppose we are also
given two goals G and G′ such that

B ≡ G = ∀~x.(δ1 N · · · N δh),

B
′
≡ G

′ = ∀~y.(δ′1 N · · · N δ
′

h′ ),

where ~x and ~y may be empty and h and h′ may be 0. The following cases may occur.

- A = B O B′. By applications of equivalence 5 and renaming of bounded variables, if
necessary, we get

A ≡ ∀~z.
(
(δ1 N · · · N δh) O (δ′1 N · · · N δ

′

h)
)
.

If h = 0 or h′ = 0 we can conclude that A ≡ ∀~z.>, by making use of equivalence 2.
Otherwise, we may repeatedly apply equivalence 4 above, and we get:

A ≡ ∀~z.
((

(δ1 O δ
′

1) N · · · N (δh O δ
′

1)
)

N · · · N
(
(δ1 O δ

′

h′ ) N · · · N (δh O δ
′

h′ )
))

.

For 1 6 i 6 h and 1 6 j 6 h′, let

δi = G
i
1 ⇒ · · · ⇒ G

i
h′′

i
⇒ H

i
1 ( · · · ( H

i
h′

i
( a

i
1 O · · · O a

i
hi

,

δ
′

j = G
′j
1
⇒ · · · ⇒ G

′j

k′′

j
⇒ H

′j
1

( · · · ( H
′j

k′

j
( a

′j
1

O · · · O a
′j

kj
.

Since F ⇒ F ′
≡ !F ( F ′ and F ( F ′

≡ F⊥
O F ′, commutativity of O suffices to

show that
δi O δ

′

j ≡ G
i
1 ⇒ · · · ⇒ G

i
h′′

i
⇒ G

′j
1
⇒ · · · ⇒ G

′j

k′′

j
⇒

H
i
1 ( · · · ( H

i
h′

i
( H

′j
1

( · · · ( H
′j

k′

j
(

a
i
1 O · · · O a

i
hi

O a
′j
1

O · · · O a
′j

kj
.

Special cases where hi = 0 or kj = 0 are handled by equivalence 1 above.

- A = B N B′. By applications of equivalence 6 and renaming of bounded variables, if
necessary, we get

A ≡ ∀~z.(δ1 N · · · N δh N δ
′

1 N · · · N δ
′

h).

If h = 0 or h′ = 0 use equivalence 3.

- A = B ( B′. By using equivalences 5 and 4, and by renaming bounded variables if
necessary, we have:

A ≡ G
⊥

O ∀~y.(δ′1 N · · · N δ
′

h)

≡ ∀~z.(G⊥
O (δ′1 N · · · N δ

′

h))

≡ ∀~z.((G⊥
O δ

′

1) N · · · N (G⊥
O δ

′

h)).



[

Ψ, G1, . . . , Gk′′

Γ, H1, . . . , Hk′

]

`

[

Ξ
a1, . . . , ak , Λ

]

[

Ψ, G1, . . . , Gk′′

Γ, H1, . . . , Hk′

]

`

[

a1 O · · · O ak, Ξ
Λ

]

(OR or a)?

[

Ψ, G1, . . . , Gk′′

Γ

]

`

[

H1 ( · · · ( Hk′ ( a1 O · · · O ak , Ξ
Λ

]

(
?

R

[

Ψ
Γ

]

`

[

G1 ⇒ · · · ⇒ Gk′′ ⇒ H1 ( · · · ( Hk′ ( a1 O · · · O ak, Ξ
Λ

]

⇒
?

R

Fig. 3 Clause reduction right inference rule ŽR

By commutativity of O it is easily seen that every (G⊥
O δ′i) is a clause. If B′

≡ >

then A ≡ >.

- A = B ⇒ B′. The argument goes as in the previous case.

- A = ∀x.B. Trivial.

�

3.1.3 Corollary Every formula in FOLL is equivalent to a clause.
Proof Let F be a formula and G ≡ F , where G is obtained as in th. 3.1.2. Then, (G (

⊥) ( ⊥ is a clause equivalent to G. �

From the proof of th. 3.1.2 an obvious algorithm can be derived to transform
a Forum formula into a goal. Please note that if A is a Forum formula and G

the equivalent goal found by the given procedure, then the set of logical constants
appearing in G is not greater than that of A. In fact, in none of the cases considered
new connectives are introduced. If G is not a clause, and a clause is required, then
(G(⊥)(⊥ introduces ⊥, not necessarily present in A. It could be possible to prove
the result in a shorter way, but we would have to give up this separation property.

Not introducing new connectives in the translation to a goal has obvious ben-
efits concerning modularity. In particular, this property takes care of some concerns
of Miller in [8] about clauses (similar to ours) with degenerate head ⊥. Clauses of
that kind, when at the left of `, are always available to rewritings, what is of course
cause of explosion of the search space of proofs.

3.2 Deriving in the Right Context

3.2.1 Definition Let ŽR be the following clause reduction right inference rule, shown
in fig. 3 in terms of Forum rules:

[
Ψ, cp(δ)
Γ, lp(δ)

]
`

[
Ξ

hd(δ), Λ

]

ŽR .[
Ψ
Γ

]
`

[
δ, Ξ

Λ

]

In the figure k > 0 and k′, k′′ > 0. Starred inference rule names mean repeated
application of the rule, or no application at all; (OR or a) stands for “application
of one of either OR or a.” In the special case where k = 0 the upper sequence of
(OR or a) rules is replaced by a single application of ⊥R.



[

Ψ, cp(δ1ρ)
Γ, lp(δ1ρ)

]

`

[

Ξ
hd(δ1ρ), Λ

] [

Ψ, cp(δ2ρ)
Γ, lp(δ2ρ)

]

`

[

Ξ
hd(δ2ρ), Λ

] [

Ψ, cp(δhρ)
Γ, lp(δhρ)

]

`

[

Ξ
hd(δhρ), Λ

]

[

Ψ
Γ

]

`

[

δ1ρ, Ξ
Λ

]

ŽR

OO

[

Ψ
Γ

]

`

[

δ2ρ, Ξ
Λ

]

ŽR

OO

· · ·

[

Ψ
Γ

]

`

[

δhρ, Ξ
Λ

]

ŽR

OO

...

NR

OO

[

Ψ
Γ

]

`

[

(δ2 N · · · N δh)ρ, Ξ
Λ

]

NR

dd

NR

@@

[

Ψ
Γ

]

`

[

(δ1 N · · · N δh)ρ, Ξ
Λ

]

NR

\\

NR

22

[

Ψ
Γ

]

`

[

∀~x.(δ1 N · · · N δh), Ξ
Λ

]

∀
?

R

OO
and

◦

[

Ψ
Γ

]

`

[

>, Ξ
Λ

]

>R

OO

[

Ψ
Γ

]

`

[

∀~x.>,Ξ
Λ

]

∀
?

R

OO

Fig. 4 Goal reduction right inference rule GR when h > 0 and h = 0

3.2.2 Proposition Every proof of

[
Ψ
Γ

]
`

[
δ, Ξ

Λ

]
has shape

[

Ψ ′

Γ ′

]

`

[

Ξ
Λ′

]

[

Ψ
Γ

]

`

[

δ, Ξ
Λ

]

ŽR

.

Proof By reasoning bottom-up, each application of an inference rule is compulsory. �

All Forum inference rules applied in ŽR are right ones. This is of course an
aspect of the fact that Forum produces only uniform proofs (see [8, 9, 10]). Rules
>R, NR and ∀R are still missing: they will appear in the reduction of goals.

We can build on ŽR an inference rule which reduces goals in the right linear
context.
3.2.3 Definition Let GR be the following goal reduction right inference rule, shown
in fig. 4 in terms of ŽR and Forum rules:

[
Ψ, cp(δ1ρ)
Γ, lp(δ1ρ)

]
`

[
Ξ

hd(δ1ρ), Λ

]
· · ·

[
Ψ, cp(δhρ)
Γ, lp(δhρ)

]
`

[
Ξ

hd(δhρ), Λ

]

GR ,[
Ψ
Γ

]
`

[
∀~x.(δ1 N · · · N δh), Ξ

Λ

]

where ~x can be empty, ρ is an appropriate renaming substitution and h > 0. In
the figure only one choice among the possible associations of N connectives has been
considered, but every choice leads to the same multiset of premises.

This whole reduction phase is deterministic: in the end a goal is reduced to
pieces with no choice about the possible outcome, except for the rather immaterial
choice of eigenvariables in GR rules. The Forum system has been designed to reduce
choices to a minimum, in a bottom-up construction of a proof. Still, some “unnec-
essary” sequentialization exists: in the case above it resides in the binary treatment
of associative connectives. We can consider the GR rule at the abstraction level in



which all premises are reached at the same time in a parallel way, thus hiding the
sequentialization at the Forum’s level of abstraction. In other words we can consider
every instance of the GR rule a representative of an equivalence class of derivations,
differing only on the associations of N connectives.

We can perform on the GR rule the same kind of simple reasoning we did for
ŽR in prop. 3.2.2.

3.2.4 Proposition Every proof of

[
Ψ
Γ

]
`

[
G,Ξ

Λ

]
has shape

[

Ψ1

Γ1

]

`

[

Ξ
Λ1

]

· · ·
[

Ψh

Γh

]

`

[

Ξ
Λh

]

[

Ψ
Γ

]

`

[

∀~x.(δ1 N · · · N δh), Ξ
Λ

]

GR GR
or

◦

[

Ψ
Γ

]

`

[

∀~x.>, Ξ
Λ

]

GR

.

GR defines the behaviour of goals when they appear at the right of `. They
generate as many threads in the computation as there are clauses in the conjunction.
These threads are independent, and can be considered parallel computations. When
GR is applied to a ∀~x.>, it just terminates a (thread of a) computation.

3.2.5 Definition A G-state sequent is a state sequent of the kind

[
Ψ
Γ

]
`

[

Λ

]
, where

all formulae in Ψ and Γ are goals.

By 3.1.2 and 3.2.4 we can always reduce provability of a Forum formula (there-
fore of a FOLL’s one, by 2.10) to provability of some G-state sequents. Moreover,
we can always reduce provability of a given formula to the provability of exactly one
G-state sequent by employing the double negation equivalence G ≡ (G ( ⊥) ( ⊥:
this last formula is a clause.

3.3 Deriving in the Left Context

G-State sequents embody the natural notion of state of our computations. A G-
state sequent represents state at a certain level of abstraction; to proceed, clauses
from its program must be applied to its atomic context. Left rules come into play:
application of clauses is mainly accomplished by (L and ⇒L rules.

3.3.1 Definition Let h be the following head matching inference rule, where k > 0:

h .[
Ψ

]
a1 O · · · O ak `

[

a1, . . . , ak

]

Fig. 5 shows how h corresponds to Forum inference rules. The same consider-
ations made above about the associativity of N hold here for O.

3.3.2 Proposition If the sequent

[
Ψ
Γ

]
a1 O · · · O ak `

[

Λ

]
is provable, then Γ is

empty, Λ = {a1, . . . , ak}+ and the only proof is h .[
Ψ

]
a1 O · · · O ak `

[

a1, . . . , ak

]



◦ ◦ ◦

[

Ψ
]

a1 `

[

a1

]

i

OO

[

Ψ
]

a2 `

[

a2

]

i

OO

· · ·

[

Ψ
]

ak `

[

ak

]

i

OO

...

OL

OO

[

Ψ
]

a2 O · · · O ak `

[

a2, . . . , ak

]

OL

bb

OL

@@

[

Ψ
]

a1 O · · · O ak `

[

a1, . . . , ak

]

OL

YY

OL

66

and

◦

[

Ψ
]

⊥ `

[ ]

⊥L

OO

Fig. 5 Head matching inference rule h when k > 0 and k = 0

3.3.3 Definition Let ŽL be the following clause reduction left inference rule, shown
in fig. 6 in terms of h and Forum rules:

[
Ψ

]
`

[
G1

]
· · ·

[
Ψ

]
`

[
Gk′′

] [
Ψ

Γ1

]
`

[
H1

Λ1

]
· · ·

[
Ψ

Γk′

]
`

[
Hk′

Λk′

]

ŽL ,[
Ψ
Γ

]
δ `

[

Λ

]

where δ = G1 ⇒· · ·⇒Gk′′ ⇒H1 ( · · ·( Hk′ ( a1 O · · ·O ak, and k, k′, k′′ > 0, and
where Γ1 ] · · · ] Γk′ = Γ and Λ1 ] · · · ] Λk′ ] {a1, . . . , ak}+ = Λ.

As an outcome of the reduction of the left focused clause, we have a multiset
of premises which will be further reduced by as many GR rules. They, in turn, will
produce G-state sequents. The most degenerate instances of ŽL have no premises.
Special cases where there are no classical or linear premises are easily inferable from
the general scheme provided. Thanks to uniform provability, all non-determinism in
searching for Forum proofs resides in left rules. Much of it can be concentrated into
a decision rule, but one should notice that ŽL is also nondeterministic in the splitting
of the linear contexts.

3.3.4 Definition Let d be the decision inference rule, defined in the following two
(non-mutually exclusive) cases, and shown in Fig. 7 in terms of Forum rules:

[
Ψ
Γ

]
δlσ `

[

Λ

]

d or[
Ψ

Γ,G

]
`

[

Λ

]

[
Ψ,G

Γ

]
δlσ `

[

Λ

]

d ,[
Ψ,G

Γ

]
`

[

Λ

]

where the conclusions are G-state sequents. In the first case Γ,G is the selected

context, in the second it is Ψ,G. G = ∀~x.(δ1 N . . . N δh), where h > 0 and ~x can
be empty, is the selected goal ; δlσ is the selected clause, 1 ≤ l ≤ h, and σ is a
substitution whose domain is ~x.



Γ = Γ ′
1

Γ ′
1 = Γ1 ] Γ ′

2

...
Γ ′

k′−1 = Γk′−1 ] Γ ′

k′

Γ ′

k′ = Γk′

Λ = Λ′
1

Λ′
1 = Λ1 ] Λ′

2

...
Λ′

k′−1 = Λk′−1 ] Λ′

k′

Λ′

k′ = Λk′ ] {a1, . . . , ak}+

[

Ψ
]

`

[

G1

]

· · ·

[

Ψ
]

`

[

Gk′′

] [

Ψ
Γ1

]

`

[

H1
Λ1

]

· · ·

[

Ψ
Γk′

]

`

[

Hk′

Λk′

]

◦

[

Ψ
]

a1 O · · · O ak `

[

a1, . . . , ak

]

h

[

Ψ
Γ ′

k′

]

Hk′ (

a1 O · · · O ak

`

[

Λ′

k′

]

(L

(L

...

(L

[

Ψ
Γ ′

1

]

H1 ( · · · ( Hk′ (

a1 O · · · O ak

`

[

Λ′
1

]

(L

(L

[

Ψ
Γ

] Gk′′ ⇒
H1 ( · · · ( Hk′ (

a1 O · · · O ak

`

[

Λ

]

⇒L

⇒L

.

..

⇒L

[

Ψ
Γ

] G1 ⇒ · · · ⇒ Gk′′ ⇒
H1 ( · · · ( Hk′ (

a1 O · · · O ak

`

[

Λ

]

⇒L

⇒L

Fig. 6 Clause reduction left inference rule ŽL

[

Ψ
Γ

]

δlσ `

[

Λ

]

[

Ψ
Γ

]

δ1σ N . . . N δhσ `

[

Λ

]

(NLL or NLR)?

OO

[

Ψ
Γ

]

G `

[

Λ

]

∀
?

L

OO

[

Ψ
Γ, G

]

`

[

Λ

]

dL

OO

or

[

Ψ, G
Γ

]

δlσ `

[

Λ

]

[

Ψ, G
Γ

]

δ1σ N . . . N δhσ `

[

Λ

]

(NLL or NLR)?

OO

[

Ψ, G
Γ

]

G `

[

Λ

]

∀
?

L

OO

[

Ψ, G
Γ

]

`

[

Λ

]

dC

OO

Fig. 7 Decision inference rule d in its two possibilities

3.3.5 Proposition All proofs of

[
Ψ
Γ

]
`

[

Λ

]
have shape

��
�???

[

Ψ
Γ ′

]

δ `

[

Λ

]

[

Ψ
Γ

]

`

[

Λ

]

d

OO , for some Γ ′,

and the inference rule above d is ŽL.

We can build on d and ŽL an inference rule which reduces goals in the program.



[

Ψ
]

`

[

Gk′′

] [

Ψ
Γ1

]

`

[

H1
Λ1

]

. . .

[

Ψ
Γk′

]

`

[

Hk′

Λk′

]

...

[

Ψ
]

`

[

G1

] [

Ψ
Γ

]

δlσ `

[

Λ

]

ŽL

OO

ŽL

YY

ŽL

EE

ŽL
nn

[

Ψ
Γ, G

]

`

[

Λ

]

d

OO

or

[

Ψ, G
]

`

[

Gk′′

] [

Ψ, G
Γ1

]

`

[

H1
Λ1

]

. . .

[

Ψ, G
Γk′

]

`

[

Hk′

Λk′

]

...

[

Ψ, G
]

`

[

G1

] [

Ψ, G
Γ

]

δlσ `

[

Λ

]

ŽL

OO

ŽL

[[

ŽL

DD

ŽL
nn

[

Ψ, G
Γ

]

`

[

Λ

]

d

OO

Fig. 8 Goal reduction left inference rule GL in its two possibilities

3.3.6 Definition Let GL be the goal reduction left inference rule, defined in the
following two (non-mutually exclusive) cases and shown in fig. 8 in terms of d and
ŽL rules:

[
Ψ

]
`

[
G1

]
· · ·

[
Ψ

]
`

[
Gk′′

] [
Ψ

Γ1

]
`

[
H1

Λ1

]
· · ·

[
Ψ

Γk′

]
`

[
Hk′

Λk′

]

GL [
Ψ

Γ,G

]
`

[

Λ

]
or

[
Ψ,G

]
`

[
G1

]
· · ·

[
Ψ,G

]
`

[
Gk′′

] [
Ψ,G

Γ1

]
`

[
H1

Λ1

]
· · ·

[
Ψ,G
Γk′

]
`

[
Hk′

Λk′

]

GL ,[
Ψ,G

Γ

]
`

[

Λ

]

where G = ∀~x.(δ1 N . . . N δh), ~x can be empty, δlσ = G1 ⇒· · ·⇒Gk′′ ⇒H1 ( · · ·(
Hk′ ( a1 O · · · O ak, for 1 ≤ l ≤ h and k, k′, k′′ > 0, and where Γ1 ] · · · ] Γk′ = Γ

and Λ1 ] · · · ] Λk′ ] {a1, . . . , ak}+ = Λ.

3.4 A System for Goals

In the previous section we built two big inference rules, a left one and a right one.
Their definition might look complex, but it is in fact rather straightforward once one
knows the (operational) meaning of linear logic connectives. One should notice that
if the language of formulae were not restricted to goals, such an enterprise would
really be cumbersome and complex, and probably pointless. Our point is, instead,
that goals in Forum actually define sort of a ‘generalised’ connective. In the sequent
calculus, connectives are defined by inference rules, and of course inference rules
should behave correctly. An important technical meaning of this last requirement is
that the rules allow for a cut elimination theorem.

We know already cut elimination from linear logic, but that theorem is proved
inside the sequent system where all the usual connectives are defined. Even if we
know that cut is admissible in our system, in order to test its internal harmony we
have to provide a cut elimination proof that does not appeal to the underlying ‘small’
connectives. In this section we expose the main ideas, the details are available in the
journal version of the paper [3].



3.4.1 Definition Let G-Forum be the formal system whose sequents are G-state

sequents or sequents of the form

[
Ψ
Γ

]
`

[
G
Λ

]
, where Ψ and Γ contain goals, and

whose inference rules are GL and GR.
Let us first define two natural cut rules for G-Forum.

3.4.2 Definition The following inference rules ./L and ./C are respectively called
cut linear and cut classical :

[
Ψ
Γ

]
`

[
G
Λ

] [
Ψ ′

G,Γ ′

]
`

[
Ξ ′

Λ′

]

./L and[
Ψ, Ψ ′

Γ, Γ ′

]
`

[
Ξ ′

Λ,Λ′

]

[
Ψ

]
`

[
G

] [
G,Ψ ′

Γ ′

]
`

[
Ξ ′

Λ′

]

./C .[
Ψ, Ψ ′

Γ ′

]
`

[
Ξ ′

Λ′

]

Ξ ′ is either empty or a singleton. In both rules G is called the eigenformula. System
G-Forum./L,./C is G-Forum where ./L, ./C are allowed in proofs.

The following is the cut elimination theorem. Its proof follows a traditional
argument in which one deals with contraction by a generalised cut rule that cuts
on several copies of the same eigenformula (see for example [4]). We use the cut
classical rule, in a certain generalisation ./′

C
, together with a contraction rule, to

make G-Forum./L,./C more general, and then we prove cut elimination on this more
general system. The core of the proof is the elimination of the ./L rule. Actually, the
design of the rules GL and GR, and the crucial decisions about the exact definition
of goals, all come from a careful analysis of what is needed in this part of the cut
elimination argument. The induction measure is based on cut-rank.
3.4.3 Theorem For every proof in G-Forum./L,./C there exists a proof in G-Forum
with the same conclusion.
Proof (Sketch) We consider a contraction rule, >, and a cut classical rule in a more general
form, ./′

C, and we show that they hold:

G-Forum>,./L,./′

C → G-Forum>,./L → G-Forum>
→ G-Forum,

i.e., a proof in a left system can be transformed into a proof in a system at its right, having
the same conclusion. The leftmost system is more general than G-Forum./L,./C , what yields
the result. �

4 Conclusions

In this paper we showed G-Forum, an asymmetrical sequent system for linear logic,
and we proved cut elimination for it. Like in the case of Forum, the left-right
asymmetry of sequents is motivated by the necessity of limiting proof search to
uniform proofs. We also imposed an asymmetry to formulae, in such a way that
their structure matches that of sequents. This new asymmetry is motivated by
the desire of structuring proofs by easily definable, big building blocks, suitable to
semantic understanding. We consider the situation where two asymmetries match
rather pleasant, and more symmetric than the same in Forum, where the structure
of formulae is symmetric, so at odds with that of sequents.

The result is a system for which it is natural to define cut rules and for which
it is possible to prove cut elimination by a procedure that rewrites proofs inside the
system, without resorting to Forum or plain linear logic. This guarantees that the



new system has a good proof theoretical standing, which usually means that it is a
good basis for further, fruitful research.

In a forthcoming paper we will show how to associate to G-Forum a labelled
event structure semantics, i.e., a behavioural model of computation, along the lines
initiated in [6]. In another paper we will apply G-Forum and its semantics to problems
of partial order planning.

The methods in this paper are about studying the structure of proofs at a
coarser abstraction level than the one provided by the sequent calculus. In another
research project we are pursuing about the calculus of structures [2, 7, 1, 11] (see
also our web site at http://www.ki.inf.tu-dresden.de/˜guglielm/Research), we study
proofs at a finer level than provided by the sequent calculus. We do so for exploring
properties of locality and modularity, which are important for computer science, that
are otherwise not available. In the future, we plan to adapt the techniques in this
paper to the calculus of structures (for example, of linear logic), in order to cover the
full range of abstractions: from the finer, suitable for distributed implementation, to
the coarser, suitable for semantics.
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