Answer Set Programming

- Answer Set Programs
- Answer Set Semantics
- Implementation Techniques
- Using Answer Set Programming
Example ASP: 3-Coloring

Problem: For a graph \((V, E)\) find an assignment of one of 3 colors to each vertex such that no adjacent vertices share a color.

\[
\begin{align*}
\text{clrd}(V,1) & :­ \ not \ clrd(V,2), \ not \ clrd(V,3), \ \text{vtx}(V). \\
\text{clrd}(V,2) & :­ \ not \ clrd(V,1), \ not \ clrd(V,3), \ \text{vtx}(V). \\
\text{clrd}(V,3) & :­ \ not \ clrd(V,1), \ not \ clrd(V,2), \ \text{vtx}(V). \\
& :­ \ \text{edge}(V,U), \ \text{clrd}(V,C), \ \text{clrd}(U,C).
\end{align*}
\]

\[
\text{vtx}(a). \ \text{vtx}(b). \ \text{vtx}(c). \ \text{edge}(a,b). \ \text{edge}(a,c). \ ...
\]
ASP in Practice

- Compact, easily maintainable representation
- Roots: logic programming
- Solutions = Answer sets to logic program
Some Applications

- Constraint satisfaction
- Planning, Routing
- Computer-aided verification
- Security analysis
- Configuration
- Diagnosis
ASP vs. Prolog

- Prolog not directly suitable for ASP
 - Models vs. proofs + answer substitutions
 - Prolog not entirely declarative

- Answer set semantics: alternative semantics for negation-as-failure

- Existing ASP Systems: CLINGO, SMODELS, DLV and others
Answer Set Semantic

- A logic program clause
 \[A \leftarrow B_1, \ldots, B_m, \text{not} \ C_1, \ldots, \text{not} \ C_n \quad (m \geq 0, n \geq 0) \]

is seen as constraint on an answer (model): if \(B_1, \ldots, B_m \) are in the answer and none of \(C_1, \ldots, C_m \) is, then must \(A \) be included in the answer.

- Answer sets should be **minimal**
- Answer sets should be **justified**
Answer Sets: Example (1)

\[
p :- \text{not } q.
\]
\[
r :- p.
\]
\[
s :- r, \text{not } p.
\]

The answer set is \{p, r\}

- \{p\} is not an answer (because it's not a model)

- \{r, s\} is not an answer (because \(r\) included for no reason)
Answer Sets: Example (2)

\[p \leftarrow q. \]
\[p \leftarrow r. \]
\[q \leftarrow \text{not } r. \]
\[r \leftarrow \text{not } q. \]

There are two answers: \{p, q\} and \{p, r\}.

Note that in Prolog, \(p \) is not derivable.
Consider a program P of ground clauses

$$A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \quad (m \geq 0, n \geq 0)$$

Let S be a set of ground atoms.

- **Reduct P^S:**
 - delete each clause with some $\text{not } C_i$ such that $C_i \in S$
 - delete each $\text{not } C_i$ such that $C_i \notin S$

- S answer set (also called stable model) $:\iff S = \text{least-model}(P^S)$
Properties

- Programs can have multiple answer sets

 \[
 p_1 : \neg q_1. \quad q_1 : \neg p_1. \\
 \vdots \\
 p_n : \neg q_n. \quad q_n : \neg p_n.
 \]

 This program has \(2^n\) answers

- Programs can have no answers

 \[
 p : \neg q. \\
 q : p.
 \]
Properties (ctd)

- A stratified program has a unique answer (= the standard model).
- Checking whether a set of atoms is a stable model can be done in linear time.
- Deciding whether a program has a stable model is NP-complete.
Programs with Variables and Functions

- Semantics: Herbrand models

- Clause seen as shorthand for all its ground instances

 \[\text{clrd}(V,1) :- \neg \text{clrd}(V,2), \neg \text{clrd}(V,3), \text{vtx}(V). \]

 stands for

 \[\text{clrd}(a,1) :- \neg \text{clrd}(a,2), \neg \text{clrd}(a,3), \text{vtx}(a). \]
 \[\text{clrd}(b,1) :- \neg \text{clrd}(b,2), \neg \text{clrd}(b,3), \text{vtx}(b). \]
 \[\ldots \]

- Constraint

 \[\leftarrow B_1, \ldots, B_m, \neg C_1, \ldots, \neg C_n \]

 shorthand for \[\text{false} \leftarrow B_1, \ldots, B_m, \neg C_1, \ldots, \neg C_n, \not\text{false} \]
Example ASP: 3-Coloring

```
clrd(V,1) :- not clrd(V,2), not clrd(V,3), vtx(V).
clrd(V,2) :- not clrd(V,1), not clrd(V,3), vtx(V).
clrd(V,3) :- not clrd(V,1), not clrd(V,2), vtx(V).
:- edge(V,U), clrd(V,C), clrd(U,C).

vtx(a). vtx(b). vtx(c). edge(a,b). edge(a,c).
```

Each answer set is a valid coloring, for example:

```
{clrd(a,1), clrd(b,2), clrd(c,2)}
```
Generalization: Classical Negation

- Rules built using classical literals (not just atoms)
- Answers are sets of literals
- Example:

 \[p \leftarrow \text{not} \neg q \]
 \[\neg q \leftarrow \text{not} \ p \]

 An answer is \{\neg q\}
Generalization: Classical Negation (ctd)

- Classical negation can be handled by normal programs:
 - treat $\neg A$ as a new atom (renaming)
 - add the constraint $\leftarrow A, \neg A$

Example:

\[
\begin{align*}
p & :\neg q' \\
q' & :\neg p \\
& : p, p' \\
& : q, q'
\end{align*}
\]

has the answer \{q'\}
Generalization: Disjunction

- Rules can have disjunctions in the head
- Direct generalization of answer set semantics

Example:

\[p \lor q : \neg p \]

has the only answer \{q\}

Another example:

\[p \lor q : \neg p \]
\[p : \neg q \]

has no answer
ASP Solver: Architecture

Two challenging tasks: handle complex data; search

Two-layer architecture:

- **Grounding** handles complex data: A set of ground clauses is generated which preserves the models

- **Model search** uses special-purpose search procedures
Grounding: Domain Restrictions

- Domain-restricted programs guarantee decidability.

- Domain-restricted programs consist of two parts:
 1. Domain predicate definitions (a stratified clause set), where each variable occurs in a positive domain predicate defined in an earlier stratum;
 2. Clauses where each variable occurs in a positive domain predicate in the body.

- The domain predicate definitions have a unique answer, which is subset of every solution to the program.

- Only those ground instances of clauses need to be generated where the domain predicates in the body are true.
Example: Domain Predicate Definitions

col(1). col(2). col(3).

r(a,b). r(a,c). ...

d(U) :- r(V,U).

tr(V,U) :- r(V,U).

tr(V,U) :- r(V,Z), tr(Z,U), d(U).

edge(t(V), t(U)) :- tr(V,U), not tr(U,U), not tr(V,V).

vtx(V) :- edge(V,U).

vtx(U) :- edge(V,U).
Example: Domain-Restricted Clauses

\[
\begin{align*}
\text{clrd}(V,1) & : - \text{not clrd}(V,2), \text{not clrd}(V,3), \text{vtx}(V). \\
\text{clrd}(V,2) & : - \text{not clrd}(V,1), \text{not clrd}(V,3), \text{vtx}(V). \\
\text{clrd}(V,3) & : - \text{not clrd}(V,1), \text{not clrd}(V,2), \text{vtx}(V). \\
& : - \text{edge}(V, U), \text{col}(C), \text{clrd}(V,C), \text{clrd}(U,C).
\end{align*}
\]
Example: Grounding

Suppose that the unique stable model for the definition of the domain predicate $\text{vtx}(V)$ contains $\text{vtx}(v_1), \ldots, \text{vtx}(v_n)$

Then for the clause

$$\text{clrd}(V,1) :- \text{not clrd}(V,2), \text{not clrd}(V,3), \text{vtx}(V).$$

grounding produces

$$\text{clrd}(v_1,1) :- \text{not clrd}(v_1,2), \text{not clrd}(v_1,3).$$

$$\ldots$$

$$\text{clrd}(v_n,1) :- \text{not clrd}(v_n,2), \text{not clrd}(v_n,3).$$
Search

• Backtracking over truth-values for atoms

• Each node consists of a model candidate (set of literals)

• Propagation rules are applied after each choice
Propagation Rules

- A propagation rule extends a model candidate by one or more new literals.

- Example: Given $q \leftarrow p_1, \text{not } p_2$ and candidate $\{p_1, \text{not } q\}$: derive p_2

- Propagation rules need to be correct: If L is derived from model candidate A then L holds in every stable model compatible with A.
Example: Propagation Rule “Upper Bound”

Consider program P and candidate model A

Let P' be all clauses in P

- whose body is not false under A
- without negative body literals

If $p \not\in \text{least-model}(P')$ derive not p

\[
P: \quad p_2 \leftarrow p_1, \text{ not } q_1. \quad A: \{q_2\} \quad P': p_2 \leftarrow p_1.
\]
\[
p_1 \leftarrow p_2, \text{ not } q_1. \quad \quad \quad \quad p_1 \leftarrow p_2.
\]
\[
p_2 \leftarrow \text{ not } q_2.
\]

Derive: \text{not } p_1, \text{ not } p_2, \text{ not } q_1, \text{ not } q_2
Schema of Local Propagation Rules

<table>
<thead>
<tr>
<th></th>
<th>Only clauses for q</th>
<th>Candidate</th>
<th>Derive</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>$q \leftarrow p_1, \text{ not } p_2$</td>
<td>$p_1, \text{ not } p_2$</td>
<td>q</td>
</tr>
<tr>
<td>(R_2)</td>
<td>$q \leftarrow p_1, \text{ not } p_2$</td>
<td>$p_2, \text{ not } p_3$</td>
<td>not q</td>
</tr>
<tr>
<td>(R_3)</td>
<td>$q \leftarrow p_1, \text{ not } p_2$</td>
<td>q</td>
<td>$p_1, \text{ not } p_2$</td>
</tr>
<tr>
<td>(R_4)</td>
<td>$q \leftarrow p_1, \text{ not } p_2$</td>
<td>not q, p_1</td>
<td>p_2</td>
</tr>
</tbody>
</table>
Example

\[f : \neg g, \neg h \]
\[g : \neg f, \neg h \]
\[f : g \]

\[\neg f \]
\[\neg g \]

\[(R_2) \]

\[\neg h \]

\[(R_2) \]

\[(R_4) \]
\[g \]
\[(R_1) \]
\[f \]

\[\times \]

\[\text{stable} \]
Lookahead

Given a program P and a candidate model A.

If, for a literal L, $\text{propagate}(P, A \cup \{L\})$ contains a conflict (some p together with $\neg p$), derive the complement of L.
Search Heuristics

Heuristics to select the next atom for splitting the search tree:

- an atom with the maximal number of occurrences in clauses of minimal size
- an atom with the maximal number of propagations after the split
- an atom with the smallest remaining search space after split + propagation
Using ASPs (Example 1): Hamiltonian Cycles

- **A Hamiltonian cycle**: a closed path that visits all vertices of a graph exactly once
- **Input**: a graph
 - \(\text{vtx}(a), \ldots \)
 - \(\text{edge}(a, b), \ldots \)
 - \(\text{initialvtx}(a) \)
- **Weight** atoms in ASP:

\[
m \{ p : d(x) \} n
\]

means that an answer contains at least \(m \) and at most \(n \) different \(p \)-instances which satisfy \(d(x) \). If \(m \) is omitted, there is no lower bound; if \(n \) is omitted, there is no upper bound.
Hamiltonian Cycles (ctd)

- Candidate answer sets: subsets of edges
- Generator (using a weight atom):

 \[
 \{ \text{hc} (X, Y) \} \ :- \ \text{edge} (X, Y)
 \]

- Answer sets for the generator given a graph:

 input graph
 + a subset of the ground facts \(\text{hc}(a, b) \) for which there is \(\text{edge}(a, b) \)
Hamiltonian Cycles (ctd)

- Tester(1): Each vertex has at most one chosen incoming and one outcoming edge

 \[\neg \text{hc}(X, Y), \neg \text{hc}(X, Z), \text{edge}(X, Y), \text{edge}(X, Z), Y \neq Z.\]
 \[\neg \text{hc}(Y, X), \neg \text{hc}(Z, X), \text{edge}(Y, X), \text{edge}(Z, X), Y \neq Z.\]

- Only subsets of chosen edges \(\text{hc}(a, b)\) forming paths (possibly closed) pass this test
Hamiltonian Cycles (ctd)

- **Tester(2):** Every vertex is reachable from a given initial vertex through chosen $hc(a, b)$ edges

 $$\begin{align*}
 :- \text{vtx}(X), \text{not } r(X). \\
 r(Y) :- hc(X, Y), \text{edge}(X, Y), \text{initialvtx}(X). \\
 r(Y) :- hc(X, Y), \text{edge}(X, Y), r(X), \text{not initialvtx}(X).
 \end{align*}$$

- Only Hamiltonian cycles pass both tests
Hamiltonian Cycles (ctd)

- Using more weight atoms enables even more compact encoding

- Tester(1) using 2 variables:

 \[
 :- 2 \{ \text{hc}(X,Y) : \text{edge}(X,Y) \}, \text{vtx}(X).

 :- 2 \{ \text{hc}(X,Y) : \text{edge}(X,Y) \}, \text{vtx}(Y).
 \]
Hamiltonian Cycles (ctd): Undirected Cycles

- **Instance \((V,E)\):**

 \[
 \begin{align*}
 &\text{vtx}(v), \\
 &\text{edge}(v,u). \quad \text{% one fact for each edge in } E
 \end{align*}
 \]

- **Generator:**

 \[
 2 \{ \text{hc}(V,U) : \text{edge}(V,U), \\
 \quad \text{hc}(W,V) : \text{edge}(W,V) \} 2 :- \text{vtx}(V).
 \]

- **Tester:**

 \[
 \begin{align*}
 &r(V) :- \text{initialvtx}(V). \\
 &r(V) :- \text{hc}(V,U), \text{edge}(V,U), r(U). \\
 &r(V) :- \text{hv}(U,V), \text{edge}(U,V), r(U). \\
 &:- \text{vtx}(V), \text{not } r(V).
 \end{align*}
 \]
Using ASPs (Example 2): Verification

- Verify, on the basis of a given formal specification, that a dynamic system satisfies desirable properties
- Example:

```
X |
---|
O |
---|
X |
```

Given a formal specification of Tic-Tac-Toe, ASP can be used to verify that it is a turn-taking game and that no cell ever contains two symbols.
Formal Specification: Initial State

init(cell(1,1,b)).
init(cell(1,2,b)).
init(cell(1,3,b)).
init(cell(2,1,b)).
init(cell(2,2,b)).
init(cell(2,3,b)).
init(cell(3,1,b)).
init(cell(3,2,b)).
init(cell(3,3,b)).
init(control(xplayer)).
Formal Specification: State Transitions

\[
\text{legal}(P, \text{mark}(X,Y)) \leftarrow \text{true}(\text{cell}(X,Y,b)), \\
\quad \text{true}(\text{control}(P)).
\]

\[
\text{legal}(\text{xplayer}, \text{noop}) \leftarrow \text{true}(\text{cell}(X,Y,b)), \\
\quad \text{true}(\text{control}(\text{oplayer})).
\]

\[
\text{legal}(\text{oplayer}, \text{noop}) \leftarrow \text{true}(\text{cell}(X,Y,b)), \\
\quad \text{true}(\text{control}(\text{xplayer})).
\]
Formal Specification: State Change

\[
\text{next(cell}(M,N,x)) :­ \text{does(xplayer,mark}(M,N)) .
\]

\[
\text{next(cell}(M,N,o)) :­ \text{does(oplayer,mark}(M,N)) .
\]

\[
\text{next(cell}(M,N,W)) :­ \text{true(cell}(M,N,W)), \ W!=b .
\]

\[
\text{next(cell}(M,N,b)) :­ \text{true(cell}(M,N,b)), \\
\text{does(P,mark}(J,K)), \ M!=J .
\]

\[
\text{next(cell}(M,N,b)) :­ \text{true(cell}(M,N,b)), \\
\text{does(P,mark}(J,K)), \ N!=K .
\]

\[
\text{next(control}(xplayer)) :­ \text{true(control}(oplayer)) .
\]

\[
\text{next(control}(oplayer)) :­ \text{true(control}(xplayer)) .
\]
Verification (ctd)

- Properties of dynamic systems are verified inductively
- Induction base:

```prolog
player(xplayer).
player(oplayer).
t0 :- 1 { init(control(X)) : player(X) } 1.
    :- t0.
```

- This program has no answer set, which proves the fact that initially exactly one player has the control.
Verification (ctd)

- State generator for the induction step:

 \[
 \text{coordinate}(1..3).
 \text{symbol}(x). \text{symbol}(o). \text{symbol}(b).
 \]

 \[
 \text{tdomain}(\text{cell}(X,Y,C)) :\quad \text{coordinate}(X), \text{coordinate}(Y), \text{symbol}(C).
 \]

 \[
 \text{tdomain}(\text{control}(X)) :\quad \text{player}(X).
 \]

 \[
 \{ \text{true}(T) : \text{tdomain}(T) \}.
 \]

- Transition generator for the induction step:

 \[
 \text{ddomain}(\text{mark}(X,Y)) :\quad \text{coordinate}(X), \text{coordinate}(Y).
 \]

 \[
 \text{ddomain}(\text{noop}).
 \]

 \[
 1 \{ \text{does}(P,M) : \text{ddomain}(M) \} 1 :\quad \text{player}(P).
 \]
Verification (ctd)

- Tester(1): Every transition must be legal

 \[-\text{does}(P,M), \text{not legal}(P,M).\]

- Tester(2): Induction hypothesis

 \[t_0 :\mathord{-} 1 \{ \text{true(control}(X)) : \text{player}(X) \} 1.\]

 \[-\text{not} \ t_0.\]

- Induction step

 \[t :\mathord{-} 1 \{ \text{next(control}(X)) : \text{player}(X) \} 1.\]

 \[-t.\]

- This program has no answer, which proves the claim that in every reachable state exactly one player has the control.
Verification (ctd)

- Induction base to prove that cells have unique contents:

 \[
 t_0(X,Y) \leftarrow 1 \{ \text{init(cell}(X,Y,Z)) : \text{symbol}(Z) \} 1.
 \]

 \[
 t_0 \leftarrow \neg t_0(X,Y).
 \]

 \[
 \neg t_0 \leftarrow \neg t_0.
 \]

- This program has no answer set, which proves the claim.
Verification (ctd)

- Induction hypothesis

\[
\begin{align*}
t_0(X,Y) & : - 1 \{ \text{true(cell}(X,Y,Z)) : \text{symbol}(Z) \} \ 1. \\
t_0 & : - \text{not } t_0(X,Y). \\
& : - t_0.
\end{align*}
\]

- Induction step to prove that cells have unique contents

\[
\begin{align*}
t(X,Y) & : - 1 \{ \text{next(cell}(X,Y,Z)) : \text{symbol}(Z) \} \ 1. \\
t & : - \text{not } t(X,Y). \\
& : - \text{not } t.
\end{align*}
\]

- This program has an answer set! Need to add uniqueness-of-control:

\[
\begin{align*}
p & : - 1 \{ \text{true(control}(X)) : \text{player}(X) \} \ 1. \\
& : - \text{not } p.
\end{align*}
\]

Now the program has no answer set, which proves the claim.
Objectives

- Answer Set Programs
- Answer Set Semantics
- Implementation Techniques
- Using Answer Set Programming