
A Quasipolynomial Cut-Elimination Procedure
in Deep Inference via Atomic Flows and

Threshold Formulae

Paola Bruscoli1?, Alessio Guglielmi1??, Tom Gundersen1? ? ?, and Michel
Parigot2†

1 University of Bath (UK) and LORIA & INRIA Nancy-Grand Est (France)
2 Laboratoire PPS, UMR 7126, CNRS & Université Paris 7 (France)

Abstract. Jeřábek showed in 2008 that cuts in propositional-logic deep-
inference proofs can be eliminated in quasipolynomial time. The proof
is an indirect one relying on a result of Atserias, Galesi and Pudlák
about monotone sequent calculus and a correspondence between this
system and cut-free deep-inference proofs. In this paper we give a direct
proof of Jeřábek’s result: we give a quasipolynomial-time cut-elimination
procedure in propositional-logic deep inference. The main new ingredient
is the use of a computational trace of deep-inference proofs called atomic
flows, which are both very simple (they trace only structural rules and
forget logical rules) and strong enough to faithfully represent the cut-
elimination procedure.

1 Introduction

Deep inference is a deduction framework (see [Gug07,BT01,Brü04]), where de-
duction rules apply arbitrarily deep inside formulae, contrary to traditional proof
systems like natural deduction and sequent calculus, where deduction rules deal
only with their outermost structure. This greater freedom is both a source of
immediate technical difficulty and the promise, in the long run, of new powerful
proof-theoretic methods. A general methodology allows to design deep-inference
deduction systems having more symmetries and finer structural properties than
sequent calculus. For instance, cut and identity become really dual of each other,

? Supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in
Deep Inference and by an ANR Senior Chaire d’Excellence titled Identity and Geo-
metric Essence of Proofs.

?? Supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in
Deep Inference and by an ANR Senior Chaire d’Excellence titled Identity and Geo-
metric Essence of Proofs.

? ? ? Supported by an Overseas Research Studentship and a Research Studentship, both
of the University of Bath, and by an ANR Senior Chaire d’Excellence titled Identity
and Geometric Essence of Proofs.

† Supported by Project INFER—Theory and Application of Deep Inference of the
Agence Nationale de la Recherche.

whereas they are only morally so in sequent calculus, and all structural rules can
be reduced to their atomic form, whereas this is false for contraction in sequent
calculus.

All usual logics have deep-inference deduction systems enjoying cut elim-
ination (see [Gug] for a complete overview). The traditional methods of cut
elimination of sequent calculus can be adapted to a large extent to deep infer-
ence, despite having to cope with a higher generality. New methods are also
achievable. The standard proof system for propositional classical logic in deep
inference is system SKS [BT01,Brü04]. Its cut elimination has been proved in
several different ways [BT01,Brü04,GG08].

Recently, Jeřábek showed that cut elimination in SKS proofs can be done
in quasipolynomial time [Jeř08], i.e., in time nO(log(n)). The result is surpris-
ing because all known cut-elimination methods for classical-logic proof systems
require exponential time, in particular for Gentzen’s sequent calculus. Jeřábek
obtained his result by relying on a construction over threshold functions by At-
serias, Galesi and Pudlák, in the monotone sequent calculus [AGP02]. Note that,
contrary to SKS, the monotone sequent calculus specifies a weaker logic than
propositional logic because negation is not freely applicable.

The technique that Jeřábek adopts is indirect because cut elimination is
performed over proofs in the sequent calculus, which are, in turn, related to
deep-inference ones by polynomial simulations, originally studied in [Brü06] and
[BG09].

In this paper we give a direct proof of Jeřábek’s result: that is, we give a
quasipolynomial-time cut-elimination procedure in propositional-logic deep in-
ference, which, in addition to being internal, has a strong computational flavour.
This proof uses two ingredients:

1. an adaptation of Atserias-Galesi-Pudlák technique to deep inference, which
slightly simplifies the technicalities associated with the use of threshold func-
tions; in particular, the formulae and derivations that we adopt are simpler
than those in [AGP02];

2. a computational trace of deep-inference proofs called atomic flows, which are
both very simple (they trace only structural rules and forget logical rules)
and strong enough to faithfully represent cut elimination.

Atomic flows, which can be considered as specialised Buss flow graphs [Bus91],
play a major role in designing and controlling the cut elimination procedure
presented in this paper. They contribute to the overall clarification of the pro-
cedure, by reducing our dependency on syntax. The techniques developed via
atomic flows tolerate variations in the proof system specification. In fact, their
geometric nature makes them largely independent of syntax, provided that cer-
tain linearity conditions are respected (and this is usually achievable in deep
inference).

The paper is self-contained. Sections 2 and 3 are devoted, respectively, to the
necessary background on deep inference and atomic flows. Threshold functions
and formulae are introduced in Sect. 5.

We normalise proofs in two steps, each of which has a dedicated section in
the paper:

1. We transform any given proof into what we call its ‘simple form’. No use
is made of threshold formulae and no significant proof complexity is intro-
duced. This is presented in Sect. 4, which constitutes a good exercise on deep
inference and atomic flows.

2. In Sect. 6, we show the cut elimination step, starting from proofs in simple
form. Here, threshold formulae play a major role.

Section 7 concludes the paper with some comments on future research direc-
tions.

2 Propositional Logic in Deep Inference: The SKS System

Formulae and Contexts

Two logical constants, f (false) and t (true) and a countable set of propositional
letters, denoted by p and q, are given. A primitive negation ·̄ is defined on
propositional letters: to each propositional letter p is associated its negation p̄.
Atoms are propositional letters and their negation; they are denoted a, b, c, d
and e. Negation is extended to the set of atoms by defining ¯̄p = p, for each
negated propositional letter p̄. Being in classical logic, one can always exchange
an atom with its negation: at the level of atoms, it doesn’t matter which one is
the propositional letter or its negation.
Formulae, denoted by A, B, C and D, are freely built from logical constants
and atoms using disjunction and conjunction. The disjunction and conjunction
of two formulae A and B are denoted respectively [A ∨B] and (A ∧B): the
different brackets have the only purpose of improving legibility. We usually omit
external brackets of formulae and sometimes we omit superfluous brackets under
associativity. Negation can be extended to arbitrary formulae in an obvious way
using De Morgan’s laws, but we do not need it in this paper. We write A ≡ B
for literal equality of formulae.
We denote (formula) contexts, i.e., formulae with a hole, by K{ }; for example,
if K{a} is b ∧ [a ∨ c], then K{ } is b ∧ [{ } ∨ c], K{b} is b ∧ [b ∨ c] and K{a ∧ d}
is b ∧ [(a ∧ d) ∨ c].

Derivations and Proofs

An (inference) rule ρ is an expression
A

ρ −−
B

, where the formulae A and B are

called premiss and conclusion, respectively. In deep inference, rules are applied
in arbitrary contexts: an (inference) step corresponding to rule ρ is an expression
K{C}

ρ −−−−−−−
K{D}

, where K{ } is a context and
C

ρ −−
D

is an instance of
A

ρ −−
B

.

A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps

with A at the top and B at the bottom, and is usually indicated by
A
Φ
∥∥∥∥S
B

, where

S is the name of the deduction system or a set of inference rules (we might omit
Φ and S); we also use the notation Φ : A → B. Sometimes we group n ≥ 0
inference steps of the same rule ρ together into one step, and we label the step
with n× ρ. Besides Φ, we denote derivations with Ψ .
A proof, often denoted by Π, is a derivation with premiss t.
The size |A| of a formula A is the number of unit and atom occurrences appearing
in it. The size |Φ| of a derivation Φ is the sum of the sizes of the formulae
occurring in it. The length of a derivation is the number of inference steps applied
in the derivation. The width of a derivation is the maximal size of the formulae
occurring in it.

Substitution

By A{a1/B1, . . . , ah/Bh}, we denote the operation of simultaneously substitut-
ing formulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the
formula A, respectively. By defining the substitution at the level of atoms, where
atoms and their negation are equal citizen, we mean that the substitution to the
occurrences of an atom doesn’t touch the occurrences of its negation. Often, we
only substitute certain occurrences of atoms: there will be no ambiguity because
this is done in the context of atomic flows, where occurrences are distinguished
with superscripts. The notion of substitution is extended to derivations in the
natural way.

Inference Rules of SKS

Structural inference rules:

t
ai↓ −−−−−
a ∨ ā

f
aw↓ −−

a

a ∨ a
ac↓ −−−−−

a

identity (interaction) weakening contraction

a ∧ ā
ai↑ −−−−−

f

a
aw↑ −−

t

a
ac↑ −−−−−

a ∧ a

cut (cointeraction) coweakening cocontraction

.

Logical inference rules:

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

switch medial

.

There are also equality rules
C

= −−
D

, for C and D on opposite sides in one of the
following equations:

A ∨B = B ∨A A ∨ f = A

A ∧B = B ∧A A ∧ t = A

[A ∨B] ∨ C = A ∨ [B ∨ C] t ∨ t = t

(A ∧B) ∧ C = A ∧ (B ∧ C) f ∧ f = f

. (1)

Conventions

(a) In derivations we freely use equality rules without mentioning them. For
instance

A
= −−−−−
A ∧ t

= −−−−−
t ∧A

ai↓ −−−−−−−−−−−
[p ∨ p̄] ∧A

is written
A

ai↓ −−−−−−−−−−−
[p ∨ p̄] ∧A

.

(b) The structural rules have been given in atomic form in SKS. This is possible
because in deep inference the general form of the structural rules, given below,
is derivable from their atomic form, moreover it is derivable with a polynomial
cost.

t
i↓ −−−−−−
A ∨ Ā

f
w↓ −−
A

A ∨A
c↓ −−−−−−

A

A ∧ Ā
i↑ −−−−−−

f

A
w↑ −−

t

A
c↑ −−−−−−
A ∧A

.

We will freely use a nonatomic rule instance to stand for some derivation in SKS
that derives that instance.

Operations on Derivations

Inference rules being applicable in any context, given a context K{ } and a
derivation Φ : A → B, one can form a derivation K{Φ} : K{A} → K{B} by
adding the context K{ } at each inference step of the derivation. Given two
derivations Φ : A→ B and Ψ : C → D, one can form in this way the derivations
Φ ∧ C : A ∧ C → B ∧ C and B ∧ Ψ : B ∧ C → B ∧D. Then one can put one

after the other to get a derivation
A ∧ C∥∥∥∥
B ∧D

of B ∧D from A ∧ C; we denote by

Φ ∧ Ψ : A ∧ C → B ∧D this derivation which consists in making Φ and then Ψ .
In the same way, one can get a derivation Φ ∨ Ψ : A ∨ C → B ∨D of B ∨D from
A ∨ C. We will freely use these constructions throughout the paper.

3 Atomic Flows

Atomic flows, which have been introduced in [GG08], are, essentially, specialised
Buss flow graphs [Bus91]. They are particular directed graphs associated with
SKS derivations: every derivation yields one atomic flow obtained by tracing the
atoms (propositional letters and their negation) occurrences in the derivation.
More precisely, one traces the behaviour of these occurrences through the struc-
tural rules: creation / destruction / duplication. No information about instances
of logical rules is kept, only structural rules play a role and, as a consequence,
infinitely many derivations correspond to each atomic flow. As shown in [GG08],
it turns out that atomic flows contain sufficient structure to control cut elimi-
nation procedures, providing in particular induction measures that can be used
to ensure termination. Such cut-elimination procedures require exponential time
on the size of the derivation to be normalised. In the present work, we improve
the complexity of cut elimination to quasipolynomial time, using in addition
threshold formulae, which are independent from the given proof.

Atomic Flow Associated to a Derivation

We first index occurrences of atoms in derivations with natural numbers in such
a way that:

– different occurrences of atoms in formulae have different indexes;
– indexes are preserved by logical rules and the context part of structural rules;
– in each instance of a structural rule, active occurrences of atoms have dif-

ferent indexes; for example an instance of the contraction rule becomes
a1 ∨ a2

ac↓ −−−−−−−−
a3

.

We associate inductively (say, in a top-down manner) to each derivation with
indexed occurrences of atoms an atomic flow as follows:

– to a formula A(a1, . . . , an) with exactly n occurrences of atoms, the following
flow, consisting of n edges, is associated:

1 · · · n ;

– the logical rules and the context part of structural rule do not change the
flow;

– each instance of a structural rule adds a vertex, whose incident edges corre-
spond to active occurrences of atoms in the rule; the association of vertices
to structural rules is illustrated below:

t
ai↓ −−−−−−−−
a1 ∨ ā2

→ 1 2
f

aw↓ −−
a1

→ 1
a1 ∨ a2

ac↓ −−−−−−−−
a3

→ 1 2

3

a1 ∧ ā2
ai↑ −−−−−−−−

f
→ 1 2

a1
aw↑ −−

t
→ 1

a3
ac↑ −−−−−−−−

a1 ∧ a2
→

1 2

3

The left-hand side of each arrow shows an instance of a structural rule, whose
atom occurrences are labelled by small numerals. Correspondingly, the right-
hand side of the same arrow, shows the vertex associated to the given rule
instance: the labelling of incident edges respects the labelling of atom occurrences.
In a top-down inductive reading of the proof, the upper edges of the vertices are
meant to be associated to the already defined flow and the lower edges are new
ones. Moreover, we qualify each vertex according to the rule it corresponds to:
for example, in a given atomic flow, we might talk about a contraction vertex,
or a cut vertex, and so on. Instead of small numerals, sometimes we use ε or ι to
label edges (as well as atom occurrences), but we do not always use labels.

All edges are directed, but we do not explicitly show the orientation. Instead,
we consider it as implicitly given by the way we draw them, i.e., edges are ori-
ented along the vertical direction. So, the vertices corresponding to dual rules,
are mutually distinct: for example, an identity vertex and a cut vertex are dif-
ferent because the orientation of their edges is different. On the other hand, the
horizontal direction plays no role in distinguishing atomic flows; this corresponds
to commutativity of logical relations. Here are for instance three representations
of the same flow:

4

21 5

3

,
1

3 4

2 5
and 3 4

21 5

.

It should be noted that atomic flows built from derivations have no directed
cycles and bear a natural polarity assignment (corresponding to atoms versus
negated atoms in the derivation), that is a mapping of each edge to an element
of {−,+}, such that the two edges of each identity or cut vertex map to different
values and the three edges of each contraction or cocontraction vertex map to
the same value. We denote atomic flows by φ and ψ.

Examples of Atomic Flows Associated to Derivations

a1 ∧
[
b2 ∨

[
a3 ∨ a4

]]
ac↓ −−−−−−−−−−−−−−−−−−−−−−−

a1 ∧
[
b2 ∨ a5

] → 1 2 3 4

5
.

(
a1 ∧

[
ā3 ∨ t

])
∧ ā8

ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(
a1 ∧

[
ā3 ∨

[
ā4 ∨ a5

]])
∧ ā8

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(
a1 ∧

[[
ā3 ∨ ā4

]
∨ a5

])
∧ ā8

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(
a1 ∧

[
ā3 ∨ ā4

])
∨ a5

]
∧ ā8

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(
a1 ∧ ā2

)
∨ a5

]
∧ ā8

ai↑ −−−−−−−−−−−−−−−−−−−−−−−−[
f ∨ a5

]
∧ ā8

= −−−−−−−−−−−−−−
a5 ∧ ā8

ac↑ −−−−−−−−−−−−−−−−(
a6 ∧ a7

)
∧ ā8

= −−−−−−−−−−−−−−−−
a6 ∧

(
a7 ∧ ā8

)
ai↑ −−−−−−−−−−−−−−−−

a6 ∧ f

→

31 8

4

2 7

5

6

.

Abstract Notation of Atomic Flows

When certain details of a flow are not important, but only the vertex kinds and
its upper and lower edges are, we can use boxes, labelled with all the vertex
kinds that can appear in the flow they represent. For example:

φ
,

ψ ψ ′

and .

When no vertex labels appear on a box, we assume that the vertices in the
corresponding flow can be any (so, it does not mean that there are no vertices
in the flow).

We sometimes use a double line notation for representing multiple edges. For
example, the following diagrams represent the same flow:

ε1 · · · εl

ψ

ι1 · · · ιm

and

ε l
1

ψ

ιm
1

,

where l,m ≥ 0; note that we use εl1 to denote the vector (ε1, . . . , εl). We might
label multiple edges with either a vector of the associated atom occurrences in a
derivation or one of the formulae the associated atom occurrences belong to in
a derivation.

We extend the double line notation to collections of isomorphic flows. For
example, for l ≥ 0, the following diagrams represent the same flow:

ε1
· · ·

εl and ε l
1 .

We observe that the flow of every SKS derivation can always be represented
as follows:

φ ψ
.

4 Normalisation Step 1: Simple Form

The first step in our normalisation procedure, defined here, consists in routine
deep-inference manipulations, which are best understood in conjunction with
atomic flows. For this reason, this section is a useful exercise for a reader who is
not familiar with deep inference and atomic flows.

In Theorem 5 of this section, we show that every proof can be transformed
into ‘simple form’. Proofs in simple form are such that we can substitute formulae
for all the atom occurrences that appear in cut instances, without substituting
for atom occurrences that appear in the conclusion of the derivation. Of course,
doing this would invalidate identity and cut instances, but in Sect. 6 we see
how we can build a valid cut-free proof from the broken derivations obtained by
substituing formulae into derivations in simple form.

We first show some standard deep-inference results. We will see how we can
permute all the identity (resp., cut) rule instances to the top (resp., bottom) of
a proof, without changing the atomic flow of the proof, and without significantly
changing the size of the proof.

Lemma 1. Given a context K{ } and a formula A, there exist derivations

A ∧K{t}∥∥∥∥{s}
K{A}

and
K{A}∥∥∥∥{s}

K{f} ∨A
,

each of whose width is the size of K{A} plus one and length is bounded by a
polynomial in the size of K{ }.

Proof. The result follows by structural induction on K{ }: The base cases are:

A ∧ {t}
= −−−−−−−−
{A}

and
{A}

= −−−−−−−−
{f} ∨A

.

The inductive cases are

A ∧ (B ∧K{t})
= −−−−−−−−−−−−−−−−−−
B ∧ (A ∧K{t})∥∥∥∥{s}
B ∧K{A}

,

A ∧ [B ∨K{t}]
s −−−−−−−−−−−−−−−−−−
B ∨ (A ∧K{t})∥∥∥∥{s}
B ∨K{A}

and

B ∧K{A}∥∥∥∥{s}
B ∧ [K{f} ∨A]

s −−−−−−−−−−−−−−−−−−
(B ∧K{f}) ∨A

,

B ∨K{A}∥∥∥∥{s}
B ∨ [K{f} ∨A]

= −−−−−−−−−−−−−−−−−
[B ∨K{f}] ∨A

.

ut

Lemma 2. Given a derivation Φ : A→B, with flow

φ =

A an
1 ān

1

φ ′

bm
1 b̄m

1 B

,

there exists a derivation

Ψ =

A
n×ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ [a1 ∨ ā1] ∧ · · · ∧ [an ∨ ān]
Ψ ′

∥∥∥∥(
b1 ∧ b̄1

)
∨ · · · ∨

(
bm ∧ b̄m

)
∨B

m×ai↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B

,

for some atoms a1, . . . , an, b1, . . . , bm and some derivation Ψ ′, such that the
flow of Ψ is φ, the flow of Ψ ′ is φ′ and the size of Ψ is bounded by a polynomial
in the size of Φ.

Proof. For every relevant interaction we perform the following transformation:

A
Φ′

∥∥∥∥
K{t}

ai↓ −−−−−−−−−−
K{a ∨ ā}
Φ′′

∥∥∥∥
B

is transformed into

A
ai↓ −−−−−−−−−−−

[a ∨ ā] ∧A
[a∨ā]∧Φ′

∥∥∥∥
[a ∨ ā] ∧K{t}∥∥∥∥{s}
K{a ∨ ā}
Φ′′

∥∥∥∥
B

,

which is possible by Lemma 1. Instances of cut rules can be dealt with in a
symmetric way.

Each transformation increases the width of the derivation by a constant and
increases the length by at most a polynomial in the width of the derivation.
Hence, the size of Ψ is bounded by a polynomial in the size of Φ. ut

We now show how to extend substitutions from formulae to derivations. Us-
ing atomic flows, we single out some atom occurrences that we substitute for.
Substitutions play a crucial role in Theorem 5 and in Theorem 11. It is impor-
tant to notice that a substitution only copies atomic flows, it does not introduce
new vertices; and that the cost of substitution is polynomial.

Lemma 3. Given a derivation Φ : A→B, let its associated flow have shape

A

φ

B

a1

ψ1

a1

· · ·

an

ψn

an

,

such that, for 1 ≤ i ≤ n, all the edges of ψi are mapped to from occurrences of
ai, then, for any formulae C1, . . . , Cn there exists a derivation

Ψ =
A{aψ1

1 /C1, . . . , a
ψn
n /Cn}∥∥∥∥

B{aψ1

1 /C1, . . . , a
ψn
n /Cn}

,

whose flow is

A

φ

B

c1,1

ψ1

c1,1

· · ·

c1,m1

ψ1

c1,m1
︸ ︷︷ ︸

m1

· · ·

cn,1

ψn

cn,1

· · ·

cn,mn

ψn

cn,mn

︸ ︷︷ ︸

mn

,

where, for every 1 ≤ i ≤ n, the atom occurrences of Ci are ci,1, . . . , ci,mi ;
moreover, the size of Ψ is bounded by a polynomial in the size of Φ and, for
each 1 ≤ i ≤ n, the size of Ci.

Proof. We sketch the proof: For each 1 ≤ i ≤ n, we can proceed by structural
induction on Ci and then on ψi. For the two cases of Ci ≡ D ∨ E and Ci ≡ D ∧ E
we have to consider, for each vertex of ψi, one of the following situations (notice
that ψi can not contain interaction or cut vertices):

f
w↓ −−
E

w↓ −−−−−−−
D ∨ E

,

f
w↓ −−−−−

f ∧ E
w↓ −−−−−−−
D ∧ E

,

D ∨D ∨ E ∨ E
c↓ −−−−−−−−−−−−−−−−−

D ∨D ∨ E
c↓ −−−−−−−−−−−−

D ∨ E

,

(D ∧ E) ∨ (D ∧ E)
m −−−−−−−−−−−−−−−−−−−−−

[D ∨D] ∧ [E ∨ E]
c↓ −−−−−−−−−−−−−−−−−−−−

[D ∨D] ∧ E
c↓ −−−−−−−−−−−−−

D ∧ E

,

and their dual ones. ut

Notation 4. When we write Φ{aψ1

1 /C1, . . . , a
ψn
n /Cn}, we mean the derivation

Ψ obtained in the proof of Lemma 3.

We now present the main result of this section. We show that any derivation
can be transformed into a derivation whose atomic flow is on what we call ‘simple
form’. Referring to the second flow in Theorem 5, we observe that we could
substitue for the atom occurrences corresponding to the rightmost copy of φ
without substituting for any atom occurrence appearing in the conclusion of the
proof. This is one of the two main ingredients in our normalisation procedure.

Theorem 5. Given a proof Φ of A, with flow

an
1 ān

1

φ ψ

A A
bm

1 b̄m
1

,

there exists a proof Ψ of A, with flow

an
1

ān
1

an
1

φ ψ φ

A bm
1 b̄m

1 A
bm

1A

,

such that the size of Ψ is bounded by a polynomial in the size of Φ.

Proof. Consider the derivation[
aφ1 ∨ ā

ψ
1

]
∧ · · · ∧

[
aφn ∨ ā

ψ
n

]
Φ′

∥∥∥∥(
bφ1 ∧ b̄

ψ
1

)
∨ · · · ∨

(
bφm ∧ b̄

ψ
m

)
∨A

,

with atomic flow
an

1 ān
1

φ ψ

A bm
1 b̄m

1 A

,

which exists and whose size is bounded by a polynomial in the size of Φ by
Lemma 2. Let a1, . . . , an, b1, . . . , bm, c1, . . . , cl be all the atoms whose occur-
rences are mapped to edges in φ and let

σ = {aφ1/ (a1 ∧ a1) , . . . , aφn/ (an ∧ an) , bφ1/ (b1 ∧ b1) , . . . ,

bφm/ (bm ∧ bm) , cφ1/ (c1 ∧ c1) , . . . , cφl / (cl ∧ cl)} .

We then construct Ψ :

t
2n×ai↓ −−−

[a1 ∨ ā1] ∧ [a1 ∨ ā1] ∧ · · · ∧ [an ∨ ān] ∧ [an ∨ ān]
2n×s −−

[(a1 ∧ a1) ∨ ā1 ∨ ā1] ∧ · · · ∧ [(an ∧ an) ∨ ān ∨ ān]
n×ac↓ −−

[(a1 ∧ a1) ∨ ā1] ∧ · · · ∧ [(an ∧ an) ∨ ān]
Φ′σ

∥∥∥∥(
(b1 ∧ b1) ∧ b̄1

)
∨ · · · ∨

(
(bm ∧ bm) ∧ b̄m

)
∨Aσ∥∥∥∥{aw↑}(

b1 ∧ b̄1
)
∨ · · · ∨

(
bm ∧ b̄m

)
∨A

m×ai↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A

,

with the required atomic flow, where, by Lemma 3, the derivation Φ′σ exists and
its size is bounded by a polynomial in the size of Φ′. ut

5 Threshold Formulae

Threshold formulae realise boolean threshold functions, which are defined as
boolean functions that are true if and only if at least k of n inputs are true (see
[Weg87] for a thorough reference on threshold functions).

There are several ways of encoding threshold functions into formulae, and the
problem is to find, among them, an encoding that allows us to obtain Theorem 10.
Efficiently obtaining the property stated in Theorem 10 crucially depends also
on the proof system we adopt.

The following class of threshold formulae, which we found to work for system
SKS, is a simplification of the one adopted in [AGP02].

In the rest of this paper, whenever we have a sequence of atoms a1, . . . , an,
we will assume, without loss of generality, that n is a power of two.

Definition 6. For every n = 2m, with m ≥ 0, and k ≥ 0, we define the operator
θnk inductively as follows:

θnk (a1, . . . , an) =

=

t if k = 0

f if k > n

a1 if n = k = 1∨
i+j=k
0≤i,j≤n/2

(
θ
n/2
i (a1, . . . , an/2) ∧ θ

n/2
j (an/2+1, . . . , an)

)
otherwise.

For any n atoms a1, . . . , an, we call θnk (a1, . . . , an) the threshold formula at
level k (with respect to a1, . . . , an).

The size of the threshold formulae dominates the cost of the normalisation
procedure, so, we evaluate their size.

Lemma 7. For any n = 2m, with m ≥ 0, and k ≥ 0 the size of θnk (a1, . . . , an)
has a quasipolynomial bound in n.

Proof. We show that the size of θnk (a1, . . . , an) is bounded by n2 logn. We reason
by induction on n; the case n = 1 trivially holds. For n > 1, we consider that
the size of θnk (a1, . . . , an) is bounded by∑

i+j=k
0≤i≤n
0≤j≤n

2n/2
2 logn/2

.

We then have∑
i+j=k
0≤i≤n
0≤j≤n

2n/2
2 logn/2 ≤

∑
i+j=n/2
0≤i≤n
0≤j≤n

2n/2
2 logn/2 ≤ (n+ 2)n/2

2 logn/2
,

and since n+ 2 ≤ n2 and n/2 < n, we have

(n+ 2)n/2
2 logn/2 ≤ n2n2 logn/2 = n2 logn−2 log 2+2 = n2 logn ,

as required. ut

Lemma 8. For any n = 2m, with m ≥ 0, k ≥ 0 and 1 ≤ i ≤ n, there exists a
derivation

Γ ik =
θnk (a1, . . . , an){ai/f}∥∥∥∥{aw↓,aw↑}

θnk+1(a1, . . . , an){ai/t}
,

whose size has a quasipolynomial bound in n.

Proof. The result follows by Lemma 7 and structural induction on Definition 6.
It is worth noting that both the premiss and the conclusion of Γ ik are logically
equivalent to θ

n−1
k (a1, . . . , ai−1, ai+1, . . . , an). ut

Lemma 9. Given a formula A and an atom a that occurs in A, there exist

derivations
a ∧A{a/t}∥∥∥∥{ac↑,s}

A
and

A∥∥∥∥{ac↓,s}
A{a/f} ∨ a

such that their sizes are both bounded

by a polynomial in the size of A.

Proof. The result follows by induction on the number of occurrences of a in A,
and Lemma 1. ut

We now present the main result of this section. We show that, using thresh-
old functions, we are able to deduce a conjunction of disjunctions from a dis-
junction of (slightly different) conjunctions. This construction is based on (seen
top-down) contractions meeting cocontrations, and can be thought of as a gen-
eralisation of the simple sharing mechanism that allows us to deduce a ∧ · · · ∧ a
from a ∨ · · · ∨ a .

In Theorem 11 we will see how using this sharing mechanism allows us to
glue together several ‘broken’ derivations in order to build a cut-free proof.

Theorem 10. Let, for some n = 2m with m ≥ 0, a1, . . . , an be distinct atoms.
Then, for every 1 ≤ k ≤ n+ 1, there exists a derivation

Γk =

(
a1 ∧ θnk−1(a1, . . . , an){a1/f}

)
∨ · · · ∨

(
an ∧ θnk−1(a1, . . . , an){an/f}

)
∥∥∥∥∥∥∥SKS\{ai↓,ai↑}

[a1 ∨ θnk (a1, . . . , an){a1/f}] ∧ · · · ∧ [an ∨ θnk (a1, . . . , an){an/f}]
,

such that the size of Γk has a quasipolynomial bound in n.

Proof. For 1 ≤ k ≤ n+ 1, we construct:

Γk =

(
a1 ∧ θnk−1(a1, . . . , an){a1/f}

)
∨ · · · ∨

(
an ∧ θnk−1(a1, . . . , an){an/f}

)
Γ 1
k
∨···∨Γnk

∥∥∥∥{aw↓,aw↑}
(a1 ∧ θnk (a1, . . . , an){a1/t}) ∨ · · · ∨ (an ∧ θnk (a1, . . . , an){an/t})

Φ1

∥∥∥∥{ac↑,s}∨
1≤i≤n θnk (a1, . . . , an)∥∥∥∥{c↓}

θnk (a1, . . . , an)∥∥∥∥{c↑}∧
1≤i≤n θnk (a1, . . . , an)

Φ2

∥∥∥∥{ac↓,s}
[a1 ∨ θnk (a1, . . . , an){a1/f}] ∧ · · · ∧ [an ∨ θnk (a1, . . . , an){an/f}]

,

where Φ1 and Φ2 exist by Lemma 9 and, for 1 ≤ i ≤ n, Γ ik exists by Lemma 8.
The size of Γk is quasipolynomial in n, by Lemma 8 and Lemma 9. ut

6 Normalisation Step 2: Cut Elimination

We now show the main construction of this paper. A cut-elimination result for
derivations in simple form. The procedure uses a class of external and indepen-
dent derivations in order to glue together pieces of the original proof. One valid
class of such derivations are the ones shown in Sect. 5.

Theorem 11. Let

1. N > 0 be an integer;
2. a1, . . . , an be distinct atoms, where n = 2m for some m ≥ 0;
3. there be, for every 0 < k < N and 1 ≤ i ≤ n, a formula Caik ;
4. there be, for every 1 ≤ k ≤ N , a derivation

Γk =

(
a1 ∧ C

a1
k−1

)
∨ · · · ∨

(
an ∧ C

an
k−1

)
∥∥∥∥∥∥∥SKS\{ai↓,ai↑}

[a1 ∨ C
a1
k] ∧ · · · ∧ [an ∨ C

an
k]

,

where Ca10 ≡ · · · ≡ C
an
0 ≡ t and Ca1N ≡ · · · ≡ C

an
N ≡ f .

For every proof Φ of A, whose flow is

ān
1 an

1

φ ψ

A
ān

1 an
1

,

where only occurrences of the atoms ā1, . . . , ān are mapped to edges in φ, there
exists a cut-free proof Ψ of A whose size is bounded by a polynomial in N , the
size of Φ and, for 1 ≤ k ≤ N , the size of Γk.

Proof. For every 1 ≤ i ≤ n, let mi (resp., m′i) be the number of interactions

(resp., cuts) where aψi and āφi appears in Φ, and consider the derivation

Φ′ =

∧
1≤j≤m1

[
aψ1 ∨ ā

φ
1

]
∧ · · · ∧

∨
1≤j≤mn

[
aψn ∨ ā

φ
n

]
∥∥∥∥

A ∨
∨

1≤j≤m′1

(
aψ1 ∧ ā

φ
1

)
∨ · · · ∨

∨
1≤j≤m′n

(
aψn ∧ ā

φ
n

) ,
with atomic flow

ān
1 an

1

φ ψ

ān
1 an

1 A

,

which exists by Lemma 2. Then, for 0 ≤ k ≤ N , construct the following deriva-
tion:

Φk =

[a1 ∨ C
a1
k] ∧ · · · ∧ [an ∨ C

an
k]∥∥∥∥{c↑,w↑}∧

1≤j≤m1
[a1 ∨ C

a1
k] ∧ · · · ∧

∨
1≤j≤mn [an ∨ C

an
k]

Φ′{āφ1 /C
a1
k ,...,āφn/C

an
k }

∥∥∥∥SKS\{ai↑}
A ∨

∨
1≤j≤m′1

(a1 ∧ C
a1
k) ∨ · · · ∨

∨
1≤j≤m′n

(an ∧ C
an
k)∥∥∥∥{c↓,w↓}

A ∨ (a1 ∧ C
a1
k) ∨ · · · ∨ (an ∧ C

an
k)

,

which exists, and whose size is bounded by a polynomial in the size of Φ and the
size of Γk, by Lemma 3. We then construct the cut-free derivation Ψ as follows:

t
n×aw↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

([a1 ∨ t] ∧ · · · ∧ [an ∨ t])
Φ0

∥∥∥∥SKS\{ai↑}
A ∨ (a1 ∧ C

a1
0) ∨ · · · ∨ (an ∧ C

an
0)

A∨Γ1

∥∥∥∥SKS\{ai↓,ai↑}
A ∨ ([a1 ∨ C

a1
1] ∧ · · · ∧ [an ∨ C

an
1])

A∨Φ1

∥∥∥∥SKS\{ai↑}
A ∨ [A ∨ (a1 ∧ C

a1
1) ∨ · · · ∨ (an ∧ C

an
1)]

−−
...

A∨A∨···∨A∨ΓN−1

∥∥∥∥SKS\{ai↓,ai↑}
A ∨A ∨ · · · ∨A ∨

([
a1 ∨ C

a1
N−1

]
∧ · · · ∧

[
an ∨ C

an
N−1

])
A∨A∨···∨A∨ΦN−1

∥∥∥∥SKS\{ai↑}
A ∨A ∨ · · · ∨A ∨

[
A ∨

(
a1 ∧ C

a1
N−1

)
∨ · · · ∨

(
an ∧ C

an
N−1

)]
A∨A∨···∨A∨A∨ΓN

∥∥∥∥SKS\{ai↓,ai↑}
A ∨A ∨ · · · ∨A ∨A ∨ ([a1 ∨ C

a1
N] ∧ · · · ∧ [an ∨ C

an
N])

A∨A∨···∨A∨A∨ΦN
∥∥∥∥SKS\{ai↑}

A ∨A ∨ · · · ∨A ∨A ∨ [A ∨ (a1 ∧ f) ∨ · · · ∨ (an ∧ f)]
n×aw↑ −−−

A ∨A ∨ · · · ∨A ∨A ∨A
(N−1)×c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

A

.

ut

It is worth noting that if we fix N = n+ 1 in Theorem 11, the formulae Caik
are bound to be threshold formulae.

Corollary 12. Given a proof Φ of A, there exists a cut-free proof Ψ of A, whose
size is bounded by a quasipolynomial in the size of Φ.

Proof. The result follows by Theorem 5, Theorem 10 and Theorem 11. ut

7 Final Comments

The quasipolynomial cut-elimination procedure makes use of the cocontraction
rule. But the cocontraction rule can also be eliminated. A natural question is
whether one can extend the quasipolynomial cut elimination to a cocontrac-
tion elimination or to say it in another way, whether one can eliminate cuts in
quasipolynomial time without the help of cocontractions. This is probably an
important question because all indications we have point to an essential role
being played by cocontraction in keeping the complexity low. Cocontraction has
something to do with sharing, it seems to provide a typical ‘dag-like’ speed-up
over the corresponding ‘tree-like’ expansion.

The role played by cocontractions is the most immediate explanation of why
quasipolynomial cut elimination works in Deep Inference and not, at the present
stage, in the sequent calculus (for full propositional logic). The reason seems
to be that exploiting cocontraction in the absence of cut is an intrinsic feature
of deep inference, not achievable in Gentzen theory because of the lack of a
top-down symmetry therein.

Another natural question is whether quasipolynomial time is the best we can
do: there is no obvious objection to the existence of a polynomial cut-elimination
procedure. It is possible to express threshold functions with polynomial formulae,
but the hardest problem seems to be to obtain corresponding derivations of
polynomial length. Deep inference flexibility in constructing derivations might
help here.

The cut-elimination procedure presented here is peculiar because it achieves
its result by using an external scheme, constituted by the threshold functions and
the corresponding derivations, which does not depend on the particular deriva-
tion we are working on. It is as if the threshold construction was a catalyzer
that shorten the cut elimination. It would be interesting to interpret this phe-
nomenon computationally, in some sort of Curry-Howard correspondence, where
the threshold construction implements a clever operator. We intend to explore
this path in the near future.

This leads to the wider question of a computational interpretation of deep
inference. Atomic flows are a weak computational trace, which takes only the
structural rules into account. It is surprising that such a trace, which forgets
all the information given by the logical rules, is powerful enough to drive the
cut-elimination procedure. We intend to carefully study its computational power
and to see whether one can construct on this ground an original computational
interpretation of proofs.

References

1. Albert Atserias, Nicola Galesi, and Pavel Pudlák. Monotone simulations of non-
monotone proofs. Journal of Computer and System Sciences, 65(4):626–638, 2002.

2. Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. Logos Verlag,
Berlin, 2004. http://www.iam.unibe.ch/ kai/Papers/phd.pdf.

3. Kai Brünnler. Deep inference and its normal form of derivations. In Arnold Beck-
mann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, Computability
in Europe 2006, volume 3988 of Lecture Notes in Computer Science, pages 65–74.
Springer-Verlag, July 2006. http://www.iam.unibe.ch/ kai/Papers/n.pdf.

4. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of
Lecture Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.
http://www.iam.unibe.ch/ kai/Papers/lcl-lpar.pdf.

5. Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep infer-
ence. ACM Transactions on Computational Logic, 10(2):1–34, 2009. Article 14.
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

6. Samuel R. Buss. The undecidability of k-provability. Annals of Pure and Applied
Logic, 53(1):75–102, 1991.

7. Alessio Guglielmi. Deep inference and the calculus of structures. Web site at
http://alessio.guglielmi.name/res/cos.

8. Alessio Guglielmi. A system of interaction and structure. ACM Transactions on
Computational Logic, 8(1):1–64, 2007. http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.

9. Alessio Guglielmi and Tom Gundersen. Normalisation control in deep infer-
ence via atomic flows. Logical Methods in Computer Science, 4(1:9):1–36, 2008.
http://arxiv.org/pdf/0709.1205.

10. Emil Jeřábek. Proof complexity of the cut-free calculus of structures. Jour-
nal of Logic and Computation, 2008. In press. http://www.math.cas.cz/ jer-
abek/papers/cos.pdf.

11. Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd and
B. G. Teubner, Stuttgart, 1987.

