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Abstract

We see a cut-free infinitary sequent system for common knowledge. Its sequents are essentially trees and the
inference rules apply deeply inside of these trees. This allows to give a syntactic cut-elimination procedure
which yields an upper bound of ϕ20 on the depth of proofs, where ϕ is the Veblen function.
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1 Introduction

Common knowledge is a well-studied notion in epistemic logic, where modalities ex-

press knowledge of agents. Two standard textbooks on epistemic logic and common

knowledge in particular, are [6] by Fagin, Halpern, Moses, and Vardi and [12] by

Meyer and van der Hoek.

The fact that a proposition A is common knowledge can be expressed by the

infinite conjunction ”all agents know A and all agents know that all agents know A

and so on”. In order to express this in a finite way we can use fixpoints: common

knowledge of A is then defined to be the greatest fixpoint of λX.everybody knows

A and everybody knows X. This notion was introduced by Halpern and Moses [8]

and further studied in [6].

The traditional way to formalise common knowledge is to use a Hilbert-style

axiom system. Such a system has a fixpoint axiom, which states that common
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knowledge is a fixpoint, and an induction rule, which states that this fixpoint is

the greatest fixpoint. However, this approach does not work well for designing a

Gentzen-style sequent calculus. In particular, Alberucci and Jäger show in [2] that

a cut-free sequent system designed in this way is not complete.

To obtain a complete cut-free system Alberucci and Jäger replace the induction

rule by an infinitary ω-rule. This results in a system in which common knowledge

is a greatest fixpoint. Although this system has been further studied in [11,9], no

syntactic cut-elimination procedure has been found. Cut-elimination was proved

only indirectly by showing completeness of the cut-free system.

In the present paper, we give a syntactic cut-elimination procedure for an in-

finitary system of common knowledge. Since our deductive system for common

knowledge includes an ω-rule with infinitely many premises, we have proofs of

transfinite depth. We will also assign transfinite ranks to formulas. We obtain

our cut-elimination result by using the method of predicative cut-elimination, see

Pohlers [14,15] and Schütte [17], which is a standard tool for the proof-theoretic

analysis of systems of set theory and second order number theory.

In our system we use deep sequents which are essentially trees and where rules ap-

ply anywhere deep inside of these trees. The general idea of applying rules deeply has

been proposed several times in different forms and for different purposes. Schütte

already used it in order to obtain systems without contraction and weakening, which

he considered more elegant [16]. Guglielmi used it to give a proof-theoretic system

for a certain substructural logic which cannot be captured in the sequent calcu-

lus. To do so, he developed the calculus of structures, a formalism which is centered

around deep inference and abolishes the traditional format of sequent calculus proofs

[7]. The calculus of structures then has also been developed for modal logic [18].

Based on these ideas, Brünnler introduced the notion of deep sequent and gave a

systematic set of sequent systems and a corresponding cut-elimination procedure

for the modal logics between K and S5 [5]. Kashima had used the same notion

of sequent already in [10] in order to give cut-free sequent systems for some tense

logics.

Several cut-free systems for logics with common knowledge exist already. The

one that is closest to our system was introduced by Tanaka in [19] for predicate

common knowledge logic and is based on Kashima’s ideas. It essentially also uses

what we call deep sequents. In fact, if one disregards the rather different notation

and some choices in the formulation of rules, then one could say that our system is

the propositional part of Tanaka’s system. There are also finitary systems. Abate,

Goré and Widmann, for example, introduce a cut-free tableau system for common

knowledge in [1]. Cut-free system have also been studied in the context of explicit

modal logic by Artemov [4] and by Antonakos [3].

However, we do not know of syntactic cut-elimination procedures for any of the

systems mentioned. Typically, cut-elimination is established only indirectly. There

are cut-elimination procedures for similar logics, for example by Pliuskevicius’ for

an infinitary system for linear time temporal logic in [13]. For linear temporal logic

he does not need deep sequents. For this logic it is enough to use indexed formulas

of the form Ai which denotes A at the i-th moment in time.

The paper is organised as follows. We first present our deep sequent system for
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common knowledge and prove the invertibility of its rules and the admissibility of

the structural rules. Then we embed the Hilbert system for common knowledge into

our deep sequent system, which gives us completeness. The main part of the paper

is devoted to establishing the reduction lemma, then the cut-elimination theorem

follows from that in the standard way. As a result we obtain an upper bound for

the depth of proofs in our system. Some discussion about future work ends this

paper.

2 The Deep Sequent System

Formulas. We are considering a language with h agents for some h > 0. Propo-

sitions p and their negations p̄ are atoms, with ¯̄p defined to be p. Formulas are

denoted by A,B,C,D. They are given by the following grammar:

A ::= p | p̄ | (A ∨ A) | (A ∧ A) | 3iA | 2iA | ∗3A | ∗2A ,

where 1 ≤ i ≤ h. The formula 2iA is read as “agent i knows A” and the formula
∗2A is read as “A is common knowledge”. The connectives 2i and ∗2 have 3i and
∗3 as their respective De Morgan duals.

Given a formula A, its negation Ā is defined as usual using the De Morgan laws,

A ⊃ B is defined as Ā ∨ B and ⊥ is defined as p ∧ p̄ for some proposition p. The

formula 2A is an abbreviation for “everybody knows A”:

2A = 21A ∧ . . . ∧ 2hA and 3A = 31A ∨ . . . ∨ 3hA.

A sequence of n ≥ 0 modal connectives can be abbreviated, for example

2
nA = 2 . . . 2

︸ ︷︷ ︸

n−times

A

Formula rank. For a formula A we define its rank rk(A) as follows:

rk(p) = rk(p̄) = 0

rk(A ∧ B) = rk(A ∨ B) = max (rk (A), rk (B)) + 1

rk(2iA) = rk(3iA) = rk(A) + 1

rk( ∗2A) = rk( ∗3A) = ω + rk(A)

Lemma 2.1 (Some properties of the rank) For all formulas A we have that

(i) rk(A) = rk(Ā),

(ii) there are m,n < ω such that rk(A) = ω · m + n,

(iii) for all k < ω we have rk(2kA) < rk( ∗2A).

Proof. Statements (i) and (ii) are immediate. For (iii), an induction on k yields

that rk(2kA) = rk(A) + k · h. By (ii) it is then enough to check that for all k we

have ω · m + n + k · h < ω + ω · m + n. 2
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Deep sequents. A (deep) sequent is a finite multiset of formulas and boxed

sequents. A boxed sequent is an expression [Γ]i where Γ is a sequent and 1 ≤ i ≤ h.

Sequents are denoted by Γ,∆,Λ,Π,Σ. A sequent is always of the form

A1, . . . , Am, [∆1]i1 , . . . , [∆n]in ,

where the ij denote agents and thus range from 1 to h. As usual, the comma

denotes multiset union and there is no distinction between a singleton multiset and

its element. The corresponding formula of the above sequent is ⊥ if m = n = 0 and

otherwise

A1 ∨ · · · ∨ Am ∨ 2i1D1 ∨ · · · ∨ 2inDn ,

where D1 . . . Dn are the corresponding formulas of the sequents ∆1 . . . ∆n. Often we

do not distinguish between a sequent and its corresponding formula, e.g. a model of

a sequent is a model of its corresponding formula. A sequent has a corresponding

tree whose nodes are marked with multisets of formulas and whose edges are marked

with agents. The corresponding tree of the above sequent is

{A1, . . . , Am}
i1

i2 in−1

in

tree(∆1) tree(∆2) . . . tree(∆n−1) tree(∆n)

,

where tree(∆1) . . . tree(∆n) are the corresponding trees of ∆1 . . . ∆n. Often we do

not distinguish between a sequent and its corresponding tree, e.g. the root of a

sequent is the root of its corresponding tree.

Sequent contexts. A context is a sequent with exactly one occurrence of the

symbol { }, the hole, which does not occur inside formulas. Such contexts are

denoted by Γ{ }, ∆{ }, and so on. The hole is also called the empty context.

The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆. For example, if

Γ{ } = A, [[B], { }] and ∆ = C, [D] then

Γ{∆} = A, [[B], C, [D]] .

Inference rules. In an instance of the inference rule ρ

ρ
Γ1 Γ2 . . .

∆

we call Γ1,Γ2 . . . its premises and ∆ its conclusion. An axiom is a rule without

premises. We will not distinguish between an axiom and its conclusion. A system,

denoted by S, is a set of rules. Figure 1 shows system DC, our infinitary deep

sequent calculus for the logic of common knowledge.

Derivations and proofs. A tree is well-founded if it does not have an infinite

path. A derivation in a system S is a well-founded tree whose nodes are labelled

with sequents and which is built according to the inference rules from S. Derivations

are visualised as upward-growing trees, so the root is at the bottom. The sequent

at the root is the conclusion and the sequents at the leaves are the premises of the
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Γ{a, ā} ∧
Γ{A} Γ{B}

Γ{A ∧ B}
∨

Γ{A,B}

Γ{A ∨ B}

2i

Γ{[A]i}

Γ{2iA}
3i

Γ{3iA, [∆, A]i}

Γ{3iA, [∆]i}

∗2
Γ{2kA} for all k ≥ 1

Γ{ ∗2A}
∗3

Γ{ ∗3A,3kA}

Γ{ ∗3A}

Fig. 1. System DC

nec
Γ

[Γ]i
wk

Γ{∅}

Γ{∆}
ctr

Γ{∆,∆}

Γ{∆}
cut

Γ{A} Γ{Ā}

Γ{∅}

Fig. 2. Necessitation, weakening, contraction and cut

derivation. A proof of a sequent Γ in a system is a derivation in this system with

conclusion Γ where all leaves are axioms. We write S ` Γ if there is a proof of Γ in

system S.

Cut rank. The cut rank of an instance of cut as shown in Figure 2 is the rank

of its cut formula A. For an ordinal γ we define the rule cutγ which is cut with at

most rank γ and the rule cut<γ which is cut with a rank strictly smaller than γ.

The cut rank of a derivation is the supremum of the cut ranks of its cuts. For a

system S and ordinals α and γ and a sequent Γ we write S
α

γ
Γ to say that there

is a proof of Γ in system S + cut<γ with depth bounded by α.

Admissibility and invertibility. An inference rule ρ with premises Γ1,Γ2 . . .

and conclusion ∆ is depth- and cut-rank-preserving admissible for a system S if

whenever S
α

γ
Γi for each premise Γi then S

α

γ
∆. For each rule ρ there is its

inverse, denoted by ρ̄, which has the conclusion of ρ as its only premise and any

premise of ρ as its conclusion. An inference rule ρ is depth- and cut-rank-preserving

invertible for a system S if γ̄ is depth- and cut-rank preserving admissible for S.

In the following, we sometimes omit the “depth- and cut-rank preserving” before

either admissible or invertible. Figure 2 shows the structural rules necessitation,

weakening and contraction, which are admissible for system DC.

Lemma 2.2 (Admissibility of the structural rules) For system DC the follow-

ing hold:

(i) The necessitation rule is depth- and cut-rank-preserving admissible.

(ii) The weakening rule is depth- and cut-rank-preserving admissible.

(iii) All rules are depth- and cut-rank-preserving invertible.

(iv) The contraction rule is depth- and cut-rank-preserving admissible.
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Proof. (i) and (ii) follow from a routine induction on the depth of the proof. The

same works for the ∧,∨,2i and ∗2-rules in (iii). The inverses of all other rules are

just weakenings. For (iv) we also proceed by induction on the depth of the proof

tree, using invertibility of the rules. The cases for the propositional rules and for

the 2i, ∗2, ∗3-rules are trivial. For the 3i-rule we consider the formula 3iA from its

conclusion Γ{3iA, [∆]i} and its position inside the premise of contraction Λ{Σ,Σ}.
We have the cases 1) 3iA is inside Σ or 2) 3iA is inside Λ{ }. We have three

subcases for case 1: 1.1) [∆]i inside Λ{ }, 1.2) [∆]i inside Σ, 1.3) Σ,Σ inside [∆]i.

There are two subcases of case 2: 2.1) [∆]i inside Λ{ } and 2.2) [∆]i inside Σ. All

cases are either simpler than or similar to case 2.2, which is as follows:

Λ′{3iA,Σ′, [∆, A]i,Σ
′, [∆]i}

3i
Λ′{3iA,Σ′, [∆]i,Σ

′, [∆]i}
ctr

Λ′{3iA,Σ′, [∆]i}

;
Λ′{3iA,Σ′, [∆, A]i,Σ

′, [∆]i}
3̄i

Λ′{3iA,Σ′, [∆, A]i,Σ
′, [∆, A]i}

ctr
Λ′{3iA,Σ′, [∆, A]i}

3i
Λ′{3iA,Σ′, [∆]i}

,

where the instance of 3̄i in the proof on the right is removed because it is depth-

preserving admissible and the instance of contraction is removed by the induction

hypothesis. 2

Lemma 2.3 (Admissibility of the general identity axiom) For all contexts Γ{ }

and all formulas A we have DC

2·rk(A)

0 Γ{A, Ā}.

Proof. We perform an induction on rk(A) and a case analysis on the main connec-

tive of A. The cases for atoms and for the propositional connectives are obvious.

For A = 2iB and A = ∗2B we respectively have

Γ{[B, B̄]i,3iB̄}
3i

Γ{[B]i,3iB̄}
2i

Γ{2iB,3iB̄}

and
...

Γ{2kB,3kB̄}
∗3

Γ{2kB, ∗3B̄}
...

∗2 1≤k<ω

Γ{ ∗2B, ∗3B̄}

.

On the left by induction hypothesis we get a proof of the premise of depth 2 · rk (B)

and thus a proof of the conclusion of depth 2·rk (B)+2 = 2·(rk (B)+1) = 2·rk (2iB).

On the right by Lemma 2.1 we can apply the induction hypothesis for each premise

to get a proof of depth 2 · rk(2kB) = 2 · (rk(B) + k · h) and thus a proof of the

conclusion of depth 2 · (rk (B) + ω) ≤ 2 · (ω + rk(B)) = 2 · rk( ∗2B). 2

3 Embedding the Hilbert System

In this section we introduce the Hilbert system HC which is essentially the same as

system KC
h from the book [6]. System HC is obtained from some Hilbert system

for classical propositional logic by adding the axioms and rules shown in Figure 3.

Soundness and completeness for HC is shown in [6]. We will now embed HC into DC

and thus establish completeness of DC. We omit a definition of the semantics and
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Brünnler

a proof of soundness of DC. We feel that it is straightforward and would not add

much to the current paper.

(K) 2iA ∧ 2i(A ⊃ B) ⊃ 2iB (CCL) ∗2A ⊃ (2A ∧ 2 ∗2A)

(IND)
B ⊃ (2A ∧ 2B)

B ⊃ ∗2A
(MP)

A A ⊃ B

B
(NEC)

A

2iA

Fig. 3. System HC

Theorem 3.1 For each formula A if HC ` A then there are m,n < ω such that

DC

ω·m

ω·n A.

Proof. The proof is by induction on the length of the derivation in HC. If A is

a propositional axiom of HC then there is a finite derivation of A in system DC

such that all premises are instances of the general identity axiom. Thus we obtain

DC

ω·m

0 A for some m < ω by admissibility of the general identity axiom (Lemma

2.3).

If A is an instance of (K), then we obtain DC

ω·m

0 A for some m < ω from the

following derivation and admissibility of the general identity axiom to take care of

the premises.

3iĀ,3i(A ∧ B̄), [B,A, Ā]i
3i

3iĀ,3i(A ∧ B̄), [B,A]i 3iĀ,3i(A ∧ B̄), [B, B̄]i
∧

3iĀ,3i(A ∧ B̄), [B,A ∧ B̄]i
3i

3iĀ,3i(A ∧ B̄), [B]i
2i

3iĀ,3i(A ∧ B̄),2iB
∨2

2iA ∧ 2i(A ⊃ B) ⊃ 2iB

If A is an instance of (CCL), then we obtain DC

ω·m
0 A for some m < ω from the

following derivation and again admissibility of the general identity axiom to take

care of the premises. An argument similar to the one used to derive the general

identity axiom guarantees that all premises of the ∗2 rule are derivable with depth

smaller than rk( ∗2A).
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3Ā,2A
∗3,wk

∗3Ā,2A

...

...

[3kĀ,2kA]i
3i,wk

3i3
kĀ, [2kA]i

∨,wk
3

k+1Ā, [2kA]i
∗3,wk

∗3Ā, [2kA]i
...

∗2 1≤k<ω

∗3Ā, [ ∗2A]i
2i

∗3Ā,2i ∗2A
...

∧ 1≤i≤h

∗3Ā,2 ∗2A
∧

∗3Ā,2A ∧ 2 ∗2A
∨

∗2A ⊃ (2A ∧ 2 ∗2A)

If the last rule in the derivation is an instance of (MP), then by the induction

hypothesis there are m1,m2, n1, n2 < ω such that DC

ω·m1

ω·n1
A and DC

ω·m2

ω·n2
A ⊃ B.

Thus we get DC

ω·m1

ω·n1
A,B by weakening admissibility and DC

ω·m2

ω·n2
Ā,B by

invertibility. An application of cut yields DC

ω·m
ω·n B for m = max (m1,m2) + 1 and

n = max (n1, n2, rk(B) + 1).

If the last rule in the derivation is an instance of (NEC), then the claim follows

from the induction hypothesis, the fact that nec is cut-rank- and depth-preserving

admissible, and an application of 2i.

If the last rule in the derivation is an instance of (IND), then by the induction

hypothesis there are m1, n1 < ω such that DC

ω·m1

ω·n1
B ⊃ (2A ∧ 2B). Then by

invertibility of the ∧- and ∨-rules we obtain

1) DC

ω·m1

ω·n1
B̄,2B and 2) DC

ω·m1

ω·n1
B̄,2A.

Let n2 be such that rk(2B) < ω · n2. We set n = max (n1, n2). By induction on k

we show that for all k ≥ 1 there is an m2 < ω such that DC

ω·m1+m2

ω·n B̄,2kA. The

case k = 1 is given by 2) and the induction step is as follows:

B̄,2B

...

B̄,2kA
nec

[B̄,2kA]i
3i,wk

3iB̄, [2kA]i
2i

3iB̄,2i2
kA

∨,wk
3B̄,2i2

kA
...

∧ 1≤i≤h

3B̄,2k+1A
cut

B̄,2k+1A ,

where the premise on the left is 1) and the premise on the right follows by induction

hypothesis. The claim follows by applications of ∗2 and ∨. 2
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4 Cut-Elimination

We write α # β for the natural sum of α and β which, in contrast to the ordinary

ordinal sum, does not cancel additive components. For an introduction to ordinals,

and a definition of the natural sum in particular, we refer to Schütte [17]. The

binary Veblen function ϕ is generated inductively as follows:

(i) ϕ0β := ωβ,

(ii) if α > 0, then ϕαβ denotes the βth common fixpoint of the functions λξ.ϕγξ

for γ < α.

Given a proof π we denote its depth by |π|. We write
α

β
Γ for DC

α

β
Γ.

Lemma 4.1 (Reduction Lemma) If there is a proof

π1

Γ{A}

π2

Γ{Ā}
cutγ

Γ{∅}

with π1 and π2 in DC + cut<γ then
|π1|# |π2|

γ
Γ{∅} .

Proof. By induction on |π1|# |π2|. We perform a case analysis on the two lower-

most rules in the given proofs. If one of the two rules is passive and an axiom then

Γ{∅} is axiomatic as well. If one is active and an axiom then we have

Γ{a, ā}

π2

Γ{ā, ā}
cut0

Γ{ā}

;

π2

Γ{ā, ā}
ctr

Γ{ā}

,

and by contraction admissibility we have
|π2|
γ

Γ{ā} and thus
|π1|# |π2|

γ
Γ{ā}. If

some rule ρ is passive then we have

π1

Γ{A}

...

π2i

Γi{Ā}
...

ρ
Γ{Ā}

cutγ
Γ{∅}

;
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...

π1

Γ{A}
ρ̄

Γi{A}

π2i

Γi{Ā}
cutγ

Γi{∅}
...

ρ
Γ{∅}

,

where i ranges from 1 to the number of premises of ρ. By invertibility of ρ we get
|π1|

γ
Γi{A}, thus by induction hypothesis

|π1|# |π2i|

γ
Γi{∅} for all i and by ρ we get

|π1|# |π2|
γ

Γ{∅}.

This leaves the case that both rules are active and not axioms. We have:

(∧ − ∨):

π11

Γ{B}

π12

Γ{C}
∧

Γ{B ∧ C}

π21

Γ{B̄, C̄}
∨

Γ{B̄ ∨ C̄}
cutσ+1

Γ{∅}

;

π11

Γ{B}

π12

Γ{C}
wk

Γ{B̄, C}

π21

Γ{B̄, C̄}
cutσ

Γ{B̄}
cutσ

Γ{∅}

,

where by weakening admissibility we get
|π12|

γ
Γ{B̄, C}, and since σ < σ + 1 = γ

we get
α

γ
Γ{∅} for α = max (|π11|,max (|π12|, |π21|)+1)+1. It is easy to check that

α ≤ |π1|# |π2|.

(2i − 3i):

π11

Γ{[∆]i, [A]i}
2i

Γ{[∆]i,2iA}

π21

Γ{[∆, Ā]i,3iĀ}
3

Γ{[∆]i,3iĀ}
cutσ+1

Γ{[∆]i}

;
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π11

Γ{[∆]i, [A]i}
wk

2

Γ{[∆, A]i, [∆, A]i}
ctr

Γ{[∆, A]i}

π11

Γ{[∆]i, [A]i}
wk,2i

Γ{[∆, Ā]i,2iA}

π21

Γ{[∆, Ā]i,3iĀ}
cutσ+1

Γ{[∆, Ā]i}
cutσ

Γ{[∆]i}

,

where the premises of the upper cut have been derived by use of weakening ad-

missibility with depth |π11| + 1 and |π21|, the natural sum of which is smaller than

|π1|# |π2|. The induction hypothesis thus yields
(|π11|+1)# |π21|

γ
Γ{[∆, Ā]i} and since

σ < σ + 1 = γ we get
|π1|# |π2|

γ
Γ{[∆]i} by the lower cut.

( ∗2 − ∗3):

...

π1k

Γ{2kA}
...

∗2 k<ω

Γ{ ∗2A}

π21

Γ{ ∗3Ā,3jĀ}
∗3

Γ{ ∗3Ā}
cutω+σ

Γ{∅}

;

π1j

Γ{2jA}

...

π1k

Γ{2kA}
wk

Γ{2kA,3jĀ}
...

∗2 k<ω

Γ{ ∗2A,3jĀ}

π21

Γ{ ∗3Ā,3jĀ}
cutω+σ

Γ{3jĀ}
cutσ+(j·h)

Γ{∅}

,

where the induction hypothesis applied on the upper cut gives us
|π1|# |π21|

γ
Γ{3jĀ}

and since by Lemma 2.1 we have σ + j · h < ω + σ = γ the lower cut yields
|π1|# |π2|

γ
Γ{∅}. 2

From the reduction lemma we obtain the first and the second elimination lemma

as usual, see for instance Pohlers [14,15] or Schütte [17].

Lemma 4.2 (First Elimination Lemma) If
α

γ+1 Γ then
2α

γ
Γ.

Lemma 4.3 (Second Elimination Lemma) If
α

β+ωγ Γ then
ϕγα

β
Γ.

The embedding of the Hilbert system into the deep sequent system together

with the second elimination lemma gives us the cut elimination theorem.

Theorem 4.4 (Cut Elimination) If A is a valid formula, then
ϕ20

0 A.

Proof. Let A be a valid formula. By the embedding of the Hilbert system into the

deep sequent system, there are natural numbers m,n such that DC

ω·m

ω·n A. By the

11
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second elimination lemma we obtain DC

α

0 A where α = ϕ1(. . . (ϕ1(ω ·m)) . . .). We

know ϕβ1
γ1 < ϕβ2

γ2 if β1 < β2 and γ1 < ϕβ2
γ2. Thus α < ϕ20. 2

5 Conclusion

We have introduced an infinitary deep sequent system for common knowledge and

a syntactic cut-elimination procedure for it. We embedded the Hilbert style system

and obtained ϕ20 as upper bound on the length of cut-free proofs for valid formulas.

To draw some more conclusions, let us look at the problem of cut elimination

in the ordinary sequent calculus, for example in the one by Alberucci and Jäger. It

has the following 2i-rule:

2i

A,Γ, ∗3∆

2iA,3iΓ, ∗3∆,Σ
,

where Γ,∆ and Σ are sets of formulas and 3iΓ is {3iA |A ∈ Γ}. The problem here is

the context restriction. Consider the following proof, where the cut is multiplicative

(context-splitting)

π1

A,Γ, ∗3B̄
2i

2iA,3iΓ,Σ, ∗3B̄

...

π2k

2
kB,∆

...
∗2 1≤k<ω

∗2B,∆
cut

2iA,3iΓ,Σ,∆

The typical transformation does not yield a proof of the conclusion, but a proof of

2iA,3iΓ,Σ,3i∆.

Such a context restriction also occurs in the standard sequent calculus for the

modal logic K. While it is hardly elegant, at least it does not cause any difficulties

for syntactic cut-elimination for K. However, we see that the context restriction

poses a genuine problem for logics with more modalities like in the logic of common

knowledge. Our more general format for sequents and inference rules solves the

problem since it does not require context restrictions.

The first item on the list of future work is of course to embed our cut-free deep

sequent system into the ordinary cut-free sequent system by Alberucci and Jäger.

This would yield a syntactic cut-elimination procedure for their system, since the

embeddings with cut are straightforward. We think we know how to do this, but we

still have to check the details. The second item on the list is cut-elimination for a

system for S5-based common knowledge. After all, S5 is the system for knowledge,

and deep sequents easily handle S5. Generalising contexts to allow two holes, the

rule to add would be

S5
Γ{3A}{A}

Γ{3A}{∅}
.

12
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After that, questions become more speculative. What is the mathematical mean-

ing of the upper bound on the depth of cut-free proofs? Is there a kind of bound-

edness lemma in modal logic similar to the one used in the analysis of set theories

and second order arithmetic? Is ϕ20 the best possible upper bound on the depth

of proofs? What would be the equivalent of a well-ordering proof in modal logic?

And finally, how could one syntactically eliminate cuts in a finitary system?
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