Maude as a Platform for Designing and Implementing Deep Inference Systems

Ozan Kahramanoğulları

Department of Computing, Imperial College London

Abstract

Deep inference is a proof theoretical methodology that generalizes the traditional notion of inference in the sequent calculus. In contrast to the sequent calculus, the deductive systems with deep inference do not rely on the notion of main connective, and permit the application of the inference rules at any depth inside logical expressions, in a way which resembles the application of term rewriting rules. Deep inference provides a richer combinatoric analysis of proofs for different logics. In particular, construction of exponentially shorter proofs becomes possible. In this paper, aiming at the development of computation as proof search tools, we propose the Maude language as a means for designing and implementing different deep inference deductive systems and proof strategies that work on these systems. We demonstrate these ideas on classical logic and argue that these ideas can be analogously carried to other deductive systems for other logics.

Keywords: Deep inference, Proof search, Maude, Term rewriting

1 Introduction

In recent years, automated proof search has started to find broader applications, especially in the fields of automated theorem proving and software verification. In this regard, development of formalisms and tools that allow the construction of shorter analytic proofs is gaining more and more importance.

Deep inference is a proof theoretical methodology that generalizes the traditional notion of inference of the sequent calculus. In contrast to the sequent calculus, the deductive systems with deep inference do not rely on the notion of main connective and permit the application of the inference rules at any depth inside logical expressions, similar to the application of term rewriting rules.

Deep inference has originally emerged as a means to conceive the logical system \mathbf{BV} [7]. System \mathbf{BV} is a conservative extension of multiplicative linear logic and it admits a self-dual noncommutative logical operator resembling the operators for sequential composition in process algebras. Although multiplicative linear logic is often represented as a sequent calculus deductive system, it is not possible to

1 Email: ozank@doc.ic.ac.uk

©2007 Published by Elsevier Science B. V.
design system BV in a standard sequent calculus [20]. A notion of deep rewriting is necessary for deriving all the provable structures of system BV.

Deep inference also provides deductive systems which bring new insights to the proof theory of other logics. The applicability of inference rules at arbitrary depths inside logical expressions brings about a rich combinatoric analysis of proofs, which previously has not been available by means of traditional approaches to proof theory: In [2], Brünnler presents deep inference systems for classical logic; in [18], Straßburger presents systems for different fragments of linear logic. In [16,17], Stewart and Stouppa give systems for a class of modal logics. Tiu presents, in [19], a local system for intuitionistic logic. All these systems follow a common scheme of inference rules which enjoys a rich proof theory.

Availability of deep inference provides shorter proofs than in the sequent calculus. For example, there is a class of theorems, called the Statman’s tautologies, for which the size of proofs in the sequent calculus grows exponentially over the size of the theorems. However, over the same class, there are deep inference proofs that grow polynomially [6]. This is because applicability of the inference rules at any depth inside a structure makes it possible to start the construction of a proof by manipulating and annihilating substructures without any prior branching. However, because inference rules can be applied in many more ways, nondeterminism in proof search is much greater than in the sequent calculus and the breadth of the search space grows rather quickly during proof search. In this respect, development of new techniques for reducing nondeterminism in proof search without sacrificing from proof theoretic cleanliness gains importance.

The language Maude [3,4] allows implementing term rewriting systems modulo equational theories due to the very fast matching algorithm that supports different combinations of associative, commutative theories, also with the presence of units. Furthermore, Maude allows to integrate conditional rules, equational, and metalevel reasoning in the modules. Exploiting these features, in this paper we propose the language Maude as a platform for designing and implementing deep inference systems where proof theoretic techniques for reducing nondeterminism [11] can be tested and further developed. We demonstrate these ideas on a system for classical logic and argue that they can be generalized to other deep inference systems.

2 Proof Theory with Deep Inference

In this section, we introduce the calculus of structures, the proof theoretic formalism that employs deep inference as its distinguishing feature from the sequent calculus.

The calculus of structures works with logical expressions called structures. From a syntactic point of view, structures can be seen as equivalence classes of formulae: The laws such as associativity and commutativity, which are usually implicitly imposed on formulae, become explicit on structures by means of an underlying equational system in a logical system of the calculus of structures. If one considers the notion of a structure from the point of view of the sequent calculus, structures can be seen as expressions intermediate between formulae and sequents which unify these two entities. Let us now see the classical logic structures:

Definition 2.1 [2] There are countably many positive atoms and negative atoms
which are denoted by \(a, b, c, \ldots \). Classical logic (KS\(_g\)) structures are generated by
\[
R ::= \mathbf{ff} \mid \mathbf{tt} \mid a \mid [R, R] \mid (R, R) \mid \overline{R}
\]
where \(\mathbf{ff} \) and \(\mathbf{tt} \) are the units false and true, respectively. \([R, R]\) is a disjunction and \((R, R)\) is a conjunction. \(\overline{R} \) is the negation of the structure \(R \). KS\(_g\) structures are considered equivalent modulo the smallest congruence relation induced by the equational system consisting of the equations for associativity and commutativity for disjunction and conjunction, De Morgan equations for negation, and the equations
\[
(\mathbf{ff}, \mathbf{ff}) \approx \mathbf{ff}, \quad [\mathbf{ff}, R] \approx R, \quad [\mathbf{tt}, \mathbf{tt}] \approx \mathbf{tt}, \quad (\mathbf{tt}, R) \approx R.
\]

Inference rules of the calculus of structures are applied to the structures, however these rule applications are not restricted to the top-level connective of the logical expressions as in the sequent calculus. In contrast, they can be applied at any depth inside logical expressions. The context, in which the rule is applied, is represented explicitly and denoted with \(S \{ \} \). Let us see a deductive system for classical logic:

Definition 2.2 [2] System KS\(_g\) for classical logic is the system given by the rules
\[
\begin{align*}
\text{ai} & \quad S(\{\mathbf{tt}\}), \quad S([R, U], T), \quad S([R, T], U), \quad S(\{\overline{R}\}), \\
\text{w} & \quad S(\{R\}), \quad c & \quad S(R, R)
\end{align*}
\]
which are called atomic interaction, switch, weakening, and contraction, respectively.

The inference rules above denote implications inside contexts, where the premise implies the conclusion. An application of an inference rule coincides with the rewritings in a term rewriting system modulo equational theory. Here, we would like to consider the application of the inference rules from a bottom-up, proof search point of view. Then, these rewritings are the rewritings defined by the rewrite relation \(R/E \) (see, e.g., [1]), where \(R \) is a rewriting system (corresponding to system KS\(_g\)) and \(E \) is the equational theory (given in Definition 2.1) [9]. For instance, for the rule \(s \in \text{KS}_g \), we have that
\[
\begin{align*}
(\overline{c}, [a, (\overline{a}, \overline{b})]) & \quad \approx \quad (c, [a, (\overline{a}, \overline{b})]) \\
(\overline{c}, [(\overline{a}, \overline{b}), a]) & \quad \rightarrow_s \quad (c, [(\overline{a}, \overline{b}), a]) \approx \quad (c, [a, (\overline{a}, \overline{b})]).
\end{align*}
\]

Thus, a derivation in (system KS\(_g\) of) the calculus of structures can be equivalently seen as a chain of instances of inference rules or a chain of rewrites. A derivation \(\Delta \) with premise \(T \) and conclusion \(R \), and whose inference rules are in KS\(_g\) will be written as \(T \vdash_{\text{KS}_g} R \Delta \) or equivalently as \(R \stackrel{\Delta}{\rightarrow}_{\text{KS}_g} T \). The proof of a structure \(R \) in system KS\(_g\) is a derivation where the conclusion is \(R \) and the premise is \(\mathbf{tt} \).

Apart from classical logic, the calculus of structures provides deductive systems for linear logic [18], modal logics [16,17], intuitionistic logic, and logics BV [7] and NEL [8]. All the calculus of structures deductive systems for these logics follow the same scheme, where the rules switch and atomic interaction are common
components of these systems. However, these rules deal with different notions of conjunction and disjunction, dictated by the equations for the unit in the subject system. In this respect, the notion of a structure which provides a uniform syntax for these logics, allows to observe the common behavior in these systems.

In order to see this on an example, let us consider system BV. In fact, the calculus of structures was originally conceived to introduce system BV in order to capture the sequential composition of process algebras by means of a self-dual, non-commutative logical operator. This logic extends multiplicative linear logic (MLL) with the rules mix and nullary mix (see, e.g., [7]), and a noncommutative self-dual operator that resembles the prefixing in the process algebras. System BV cannot be expressed without deep inference, as Tiu proved in [20].

Definition 2.3 There are countably many positive atoms and countably many negative atoms. Atoms are denoted by a, b, c, \ldots. BV structures are generated by

$$R ::= \circ \mid a \mid [R, R] \mid (R, R) \mid \langle R; R \rangle \mid \overline{R}$$

where \circ, the unit, is not an atom. $[R, R]$ is called a par structure, (R, R) is called a copar structure, and $\langle R; R \rangle$ is called a seq structure. \overline{R} is the negation of the structure R. BV structures are considered equivalent modulo the smallest congruence relation induced by the equational system consisting of the equations for associativity and commutativity for par and copar, associativity for seq structures, and the equations

$$[\circ, R] \approx R, \ (\circ, R) \approx R, \ \ [R,T] \approx [R,T], \ \ (R,T) \approx (R,T),$$

$$\langle \circ, R \rangle \approx R, \ (R, \circ) \approx R, \ \ (R,T) \approx [R,T], \ \ \overline{R} \approx R, \ \ \circ \approx \circ.$$

System BV is given with the rules

$$\begin{array}{ll}
\text{ai} & S\{\circ\} \rightarrow S[a,\overline{a}], \\
\text{s} & S[\langle R; U \rangle, T] \rightarrow S[(R, T), U], \\
\text{q} & S[\langle R; T \rangle, \langle U; V \rangle] \rightarrow S[\langle R; U \rangle; [T, V]].
\end{array}$$

which are called atomic interaction, switch, and seq, respectively.

It is important to observe that the seq is a logical operator which is noncommutative and self-dual. A BV structure R has a proof if and only if there is a derivation with the conclusion R and the premise \circ. For an indepth exposure to the proof theory of system BV, the reader is referred to [7,20,12].

3 Implementing Deep Inference in Maude

The language Maude [3,4] allows implementing term rewriting systems modulo equational theories due to its very fast matching algorithm that supports different combinations of associative commutative theories, also in the presence of units. These features of language Maude can be used to implement the deductive systems of the calculus of structures in a straight-forward and simple way such that there is
a one-to-one match between the definitions of the deductive systems and the corresponding Maude modules. Let us see this first on system K\textsubscript{Sg}. The following Maude functional module implements Definition 2.1:

\texttt{fmod K\textsubscript{Sg}-Signature is}
\begin{verbatim}
sorts Unit Atom Structure .
subsort Unit Atom < Structure .
ops tt ff : -> Unit .
ops a b c d e f g h : -> Atom .
endfm
\end{verbatim}

In this module, negation of a structure is represented with \texttt{_,_}. We use the syntax \texttt{\{_,_\}} for conjunction instead of \texttt{(_,_,_)}). This way, we avoid ambiguities, because brackets are often used in meta-level programming and elsewhere in Maude. The information about the associativity and commutativity of the structures and their units are expressed simply by means of the operator attributes, e.g., \texttt{[assoc comm id: ff]} for the disjunction.

The following Maude system module implements Definition 2.2.

\texttt{mod K\textsubscript{Sg} is}
\begin{verbatim}
inc K\textsubscript{Sg}-Signature .
var R T U : Structure . var A : Atom .
rl [weakening1] : [R , T] => [R , ff] .
rl [tt] : [tt , tt] => tt .
rl [ff] : \{ ff , ff \} => ff .
endm
\end{verbatim}

This module uses the module \texttt{K\textsubscript{Sg}-Signature} above. It is important to observe that the rules of system K\textsubscript{Sg} are expressed as bottom proof search term rewriting rules. In order to avoid the application of the rule weakening to negative atoms, in the module above, we have two rules for weakening. The rules \texttt{[tt]} and \texttt{[ff]} implement the corresponding equations for unit in Definition 2.1, however from the point of view of proof search, it suffices to consider these equations by orienting them from left to right.

Similarly to the above module, we can implement system BV. The following two modules implement Definition 2.3:

\texttt{fmod BV-Signature is}
\begin{verbatim}
sorts Atom Unit Structure .
subsort Unit Atom < Structure .
op o : -> Unit .
op _ : Structure -> Structure [prec 50].
endfm
\end{verbatim}
ops a b c d e f g h l : -> Atom .
endfm

mod BV is
 inc BV-Signature .
 var R T U V : Structure . var A : Atom .
 rl [q-down] : [< R ; T > , < U ; V >] => < [R,U] ; [T,V] > .
endm

Because Maude implements the transitive closure of the rewriting relation R/E it is possible to use these modules for proof search by resorting to the built in search function which implements breadth-first search. This way, for example for the structure $[a,b,(\overline{a},\overline{b})]$, one can explore all the possible one step rule applications, or search for derivations (or proofs), respectively:

- search $[a , [b , \{ - a , - b \}]]$ =>1 R .
- search $[a , [b , \{ - a , - b \}]]$ =>* $[a , - a]$.

Then, after a successful search, one can display the computed derivation:

Maude> show path 78 .
state 0, Structure: [a,[b,{- a,- b}]]
===[rl [U,{R,T}] => {T,[R,U]} [label s] .]===>
state 8, Structure: [a,{- a,[b,- b]}]
===[rl [A,- A] => o [label ai-down] .]===>
state 78, Structure: [a,- a]

In the calculus of structures, inference rules can be applied to the structures that are not in the scope of negation. For this reason, it is more favorable to consider only those structures that are in negation normal form. Furthermore, although the equations for units can be easily expressed in Maude, these equations often cause redundant matchings of the inference rules where the premise and the conclusion of the instance of the inference rules are equivalent structures. In the following, we will consider the structures to be in normal form when they are in negation normal form, and no units can be equivalently removed. For this purpose, within functional modules, which we integrate to the above modules, we orient the equations for De Morgan laws, and equations for unit, in such a way that delivers the normal forms of the structures. By doing so, we can remove the operator attributes id: ff and id: tt from the module $KSG-Signature$ and the operator attribute id: o from the module $BV-Signature$. Furthermore, we can move all the invertible rules\(^2\) in the module KSG to the module $KSG-UNF$ in the form of equations. The rules [tt], [ff], and [interaction] are such invertible rules. Because we are interested in proof search, we allow weakening only in the disjunctive contexts.

\(^2\) Invertible rules are those rules for which the premise and the conclusion of every instance of these rule are equivalent logical expressions.
Removing the equations for unit in system \textit{KSg} does not require the modification of the inference rules of system \textit{KSg}. However, for the case of system \textit{BV}, when we remove the operator attribute \textit{id: o} from the module \textit{BV-Signature}, some applications of the rule [\textit{q-down}] are broken. In order to maintain these applications, thus the completeness, we must include the following rules in the module \textit{BV}:

\begin{itemize}
 \item \texttt{rl [q2]} : \{ R , T \} => < R ; T > .
 \item \texttt{rl [q3]} : \{ R , < T ; U > \} => < \{ R , T \} ; U > .
 \item \texttt{rl [q4]} : \{ R , < T ; U > \} => < T ; \{ R , U \} > .
\end{itemize}

Because these modifications disable the redundant instances of the inference rules due to the applications of the equations for unit, they provide a better performance in proof search for system \textit{BV} [10]. However, because of the rule [\textit{contraction}], it is not possible to use system \textit{KSg} for proof search: In breadth-first search, instances of this rule, which copy arbitrary substructures, cause the search space to grow rather quickly. In order to get over this, the application of this rule must be controlled. In the following, we will address this issue in conjunction with some proof theoretical ideas that aim at reducing nondeterminism in proof search.

4 Implementing Proof Theoretic Strategies:

In the calculus of structures, we can construct proofs which consist of separate phases such that in each phase only certain inference rules are used.

\textbf{Theorem 4.1} If a structure \(R \) has a proof in system \textit{KSg}, then there exist struc-
tures R_1, R_2, R_3, R'_1, R'_2, and R'_3 and proofs of the following forms:

$\Delta_s \downarrow \{w_1\}$	$\Delta_s \downarrow \{a_1\}$	$\Delta_s \downarrow \{a_1\}$
$\Delta_s \downarrow \{a_1\}$	$\Delta_s \downarrow \{w_1\}$	$\Delta_s \downarrow \{w_1\}$
$\Delta_s \downarrow \{s\}$	$\Delta_s \downarrow \{s\}$	$\Delta_s \downarrow \{s\}$
$\Delta_s \downarrow \{c\}$	$\Delta_s \downarrow \{c\}$	$\Delta_s \downarrow \{c\}$
R_3	R'_3	R'_3
R_2	R_2	R_2
R_2	R_1	R_1
R	R	R

Proof. We can derive the rule, that we call distributive(d), as follows:

\[
\begin{align*}
S((R, U), [T, U]) & \quad S\downarrow ((R, U), [T, U]) \\
S\downarrow ((R, U), [T, U]) & \quad S\downarrow ((R, T), U, U) \\
\end{align*}
\]

By applying this rule exhaustively to structure R bottom up, we obtain the derivation Δ_2 with the premise R_2, which is in conjunctive normal form. Because R_2 is provable, each disjunction in R_2 must have an atom a and its dual \bar{a}. By applying the rule $a \downarrow$ bottom up to each one of these pairs of dual atoms, we obtain the derivation Δ_2 with the premise R_3, where each disjunction has an instance of the unit \mathfrak{t}. By applying the rule $w \downarrow$ exhaustively to all the remaining structures in each disjunction which are different from the unit \mathfrak{t}, we obtain the derivation Δ_3.

i. With structural induction on R, we obtain the derivations $\Delta_{1,a}$ and $\Delta_{1,b}$ from the derivation Δ_1. If R is an atom or the unit \mathfrak{t} or \mathfrak{f}, then it is already in conjunctive normal form. If $R = (T, U)$ or $R = [T, U]$ then we have the derivations (1.) and (2.) below by induction hypothesis where T_2 and U_2 are in conjunctive normal form. Let n be the number of disjunctions in U_2. We assume that n is greater than one. Otherwise, we can exchange T_2 with U_2, or if in both T_2 and U_2, there are less than 2 disjunctions, then they are already in conjunctive normal form. We construct the derivations for $R = (T, U)$ and $R = [T, U]$, respectively, as in (3.) and (4.) below:

\[
\begin{align*}
(1.) & & (2.) & & (3.) & & (4.) \\
\Delta_2 \downarrow \{s\} & & \Delta_2 \downarrow \{s\} & & [\Delta_2 \downarrow \{s\}] & & [\Delta_2 \downarrow \{s\}] \\
T_1 & & U_1 & & [\Delta_2 \downarrow \{s\}, \Delta_2 \downarrow \{s\}] & & [\Delta_2 \downarrow \{s\}, \Delta_2 \downarrow \{s\}] \\
\Delta_2 \downarrow \{c\} & & \Delta_2 \downarrow \{c\} & & \Delta_2 \downarrow \{c\} & & \Delta_2 \downarrow \{c\} \\
T & & U & & \Delta_2 \downarrow \{c\} & & [\Delta_2 \downarrow \{c\}] \\
\end{align*}
\]

ii. We trivially permute each instance of $w \downarrow$ under the instances of $a \downarrow$.

iii. We permute the instances of the rule s over the rule w: Other cases being
trivial, we consider the following: (a.) The redex is of $w \downarrow$ is inside the contractum of s. (b.) The contractum of s is inside the redex of $w \downarrow$.

\[
\frac{S(\text{ff}, T)}{S(\{R, U\}, T)} \quad \frac{S(\text{ff}, T)}{S(R, U)} \quad \frac{S([R, U], \text{ff})}{S([R, U], T, P)} \quad \frac{S([R, U], \text{ff})}{S(\{R, U\}, \text{ff})} \\
\frac{S([R, T], U)}{S(\{R, T\}, U)} \quad \frac{S([R, U], T, P)}{S(\{R, T\}, U, P)} \quad \frac{S([R, T], U)}{S(\{R, T\}, U)}
\]

In [2] and [18], Brünnler and Straßburger, respectively, present classes of theorems, called decomposition theorems, for classical logic and linear logic. The leftmost derivation in the theorem above is given in the semantic cut elimination proof in [2]. When these theorems provide normal forms at intermediate stages between phases, they can be used as search strategies in proof search. The availability of conjunctive normal provides such a strategy, however with an exponential cost in the transformation, for some classes of formulae.

4.1 Using the Meta-level Features to Implement Decomposition of Proofs

In order to implement the ideas in Theorem 4.1, we require a mechanism that allows to pass information between modules for the inference rules at different phases of the proof. For this purpose, we employ the meta-level features of language Maude (see, e.g., [5]), which allow to represent such information as meta-data in the presence of normal forms. We need to include the meta-level module in module KSg-Signature and we also need to add an operator (error) which serves as an error token in the meta-level computation:

\begin{verbatim}
inc META-LEVEL .
op error : -> [Structure] .
\end{verbatim}

Instead of exploring the search space by using the search function to find a proof, in the modules below, we use functional modules which deterministically compute the proof by means of a strategy corresponding to the left-most derivation of Theorem 4.1.

\begin{verbatim}
fmod distribute is inc KSg-Signature .
 var R T U : Structure .
endfm

fmod interaction is inc KSg-Signature .
 var A : Atom .
 eq \[A , - A \] = tt .
endfm

fmod weakening is inc KSg-Signature .
 var R : Structure .
 eq \[tt , R \] = tt . eq \{ tt , R \} = R .
endfm
\end{verbatim}
fmod KSG-Strat is
 inc KSG-Signature . inc KSG-UNF . inc distribute .
 inc interaction . inc weakening .
 op prove : Structure -> Structure .
 var R : Structure .
 eq prove R =
 downTerm(getTerm(metaReduce([‘weakening],
 getTerm(metaReduce([‘interaction],
 getTerm(metaReduce([‘distribute],
 getTerm(metaReduce([‘KSG-UNF], upTerm(R))))))))))), error) .
endfm

In the implementation above, the different phases of the proof, where different sets of inference rules are used, are represented by functional modules which are called by the operator prove of the functional module KSG-Strat. Seen procedurally, by means of the operation upTerm, this operator first converts the object level representation of the input query term to a Maude meta-level representation of the same term with respect to the module KSG-Signature. Then the meta-level term corresponding to the negation normal form of the input term is computed by means of the operation metaReduce which takes the meta-representation of the functional module KSG-UNF as argument. Then the computed meta-level terms are passed similarly to the meta-level representations of the functional modules distribute, interaction and weakening, respectively, which reduce these meta-level terms with respect to their rules.

4.2 Interaction Rules with Controlled Contraction in Proof Search

Availability of deep inference provides shorter proofs than in the sequent calculus [6]: Applicability of the inference rules at any depth inside a structure makes it possible to start the construction of a proof by manipulating and annihilating substructures. This provides many more different proofs of a structure, some of which are shorter than in the sequent calculus. However, deep inference causes a greater nondeterminism: Because the inference rules can be applied at many more positions than in the sequent calculus, the breadth of the search space increases rather quickly. In order to get over this problem, in [11] we have introduced the following modification on the rule s which exploits an interaction scheme on the structures.

Definition 4.2 For a structure R, let at R denote the set of atoms appearing in structure R. The rule lazy interaction switch (lis) is the rule

\[
\text{lis} \quad \frac{S((R, W), T)}{S((R, T), W)},
\]

where at W \cap at R \neq \emptyset and W is not a disjunction (par structure).

The intuition behind the rule lis can be seen as follows: Let us consider the subformulae which are in a disjunction relation as interacting formulae, whereas
those formulas in a conjunction relation as non-interacting formulas. For example, when we consider the formula \([a, b, (\bar{a}, \bar{b})]\), \(a\) is interacting with \(b\), \(\bar{a}\), and \(\bar{b}\), whereas \(\bar{a}\) is interacting with \(a\) and \(b\), but it is not interacting with \(\bar{b}\). The interacting formulas have the potential to annihilate each other to construct a proof, whereas the non-interacting formulae do not. In [11], we have shown that the rule switch can be replaced with the rule \(lis\) in systems \(BV\) and \(KSg\) without losing completeness.

Theorem 4.3 [11] Systems \(\{ai\downarrow, s\}\) and \(\{ai\downarrow, lis\}\) are equivalent, that is, they prove the same structures.

In the following, by integrating the contraction rule to the rule \(lis\) we will obtain a system where the nondeterminism in proof search is reduced and the application of the contraction rule is controlled.

Definition 4.4 The rule \(cis\) is the rule

\[
\frac{S\left(\left[\left[\left(R, W\right], T\right], \left(\left[\left(R, T\right], W\right]\right]\right]\right]}{S\left(\left[\left[\left(R, T\right], W\right]\right]\right]}
\]

where \(\text{at} W \cap \text{at} R \neq \emptyset\), and \(W\) is not a disjunction (par structure).

Definition 4.5 System \(KSgic\) is the system resulting from replacing the rule \(s\) and \(c\downarrow\) with the rule \(cis\).

Theorem 4.6 Systems \(KSg\) and \(KSgic\) are equivalent, that is, they prove the same structures.

Proof. Every proof in system \(KSgic\) is a proof in system \(KSg\). For the proof of the other direction, let \(R\) be a provable \(KSg\) structure.

Consider the proof (1.) which we construct by Theorem 4.1. By Theorem 4.3, we construct the proof (2.). By trivial permutations of the rule \(w\downarrow\) over the rule \(lis\), we then construct the proof (3.). In order to construct the proof (4.), we repeat the following procedure inductively: We take the top-most instance of the rule \(c\downarrow\)
in derivation Δ: If the redex of this rule is a par structure, we replace it as follows:

\[
\begin{align*}
\cfrac{S[R_1, R_2, \ldots, R_n, R_1, R_2, \ldots, R_n]}{S[R_1, R_2, \ldots, R_n]} & \quad \sim \quad \cfrac{S[R_1, R_2, \ldots, R_n, R_1]}{S[R_1, R_2, \ldots, R_n]} \\
\cfrac{S[R_1, R_2, \ldots, R_n]}{S[R_1, R_2, \ldots, R_n]} & \quad \vdash \quad \cfrac{S[R_1]}{S[R_1]}
\end{align*}
\]

We then permute the top-most instance of the rule $\cfrac{\vdash}{S[R_1]}$ until it cannot be permuted and where its contractum is used in an instance of the rule lis and we replace these two rule instances with an instance of the rule cis.

The condition imposed on the rule s reduces the breadth of the search space by reducing the numbers of the possible rule instances of this rule. This situation delays the exponential blow-up in proof search and makes it plausible to consider more complex formulae for proof search.

We implement the conditional inference rules as conditional rewrite rules in Maude. In order to compute the condition of the rules lis and cis, we use the functional module below which implements the function can-interact.

\begin{verbatim}
fm mod Can-interact is inc KSg-Signature .
 sort Interaction_Query .
 op can-interact : -> Interaction_Query .
 op empty-set : -> Interaction_Query .
 op _or_ : Interaction_Query Interaction_Query
 -> Interaction_Query [assoc comm prec 70] .

 var R T U V : Structure . var A B : Atom .
 var C : Interaction_Query .

 eq A ci - A = can-interact .
 eq - A ci A = can-interact .
 eq [T , U] ci R = T ci R or U ci R .
 eq { T , U } ci R = T ci R or U ci R .
 eq A ci [R , T] = A ci R or A ci T .
 eq A ci { R , T } = A ci R or A ci T .

 eq can-interact or C = can-interact .
 eq empty-set or C = C .
endfm
\end{verbatim}

The following system module implements system KSgic.

\begin{verbatim}
mod KSgic is inc KSg-UNF . inc Can-interact .
 var R T U V P Q : Structure . var A : Atom .
\end{verbatim}

12
Remark 4.7 In proof search, the rule cis copies many structures which are often superfluous and weakened during the construction of the proofs. When we consider the way sequent calculus proofs are constructed, an alternative to this rule is as follows: The rules cis_1 and cis_2 are the rules

\[
\begin{align*}
\text{cis}_1: & \quad S([R,W], [T,W]) \\ & \quad S((R,T), W)
\end{align*}
\]

\[
\begin{align*}
\text{cis}_2: & \quad S([R,W], T) \\ & \quad S((R,T), W)
\end{align*}
\]

where \(W \) is not a disjunction, in cis_1 we have at\(W\) \(\cap R \neq \emptyset \) and at\(W \) \(\cap T \neq \emptyset \), and in cis_2 we have at\(W \) \(\cap R \neq \emptyset \) and at\(W \) \(\cap T = \emptyset \). Let us call KSGic' the system obtained by replacing the cis in system KSGic with the rules cis_1 and cis_2. Although for some formulae KSGic seems to be more advantageous, for pigeon-hole formulae, system KSGic performs better than system KSGic' (See 4.3).

4.3 Experiments

We performed experiments on the modules discussed by running them on the formulae below. The results are displayed in Table 4.3. There, fDKSg denotes the module KSG-Strat; DKSg denotes the module where the switch rule is replaced with the following rule:

\[
\text{rl1 [distributive]} : \quad [\{ R, T \}, U] \Rightarrow \{ [R, U], [T, U] \}.
\]

The proof marked with (*) is computed in 920 ms. All other displayed proofs are computed in less than 20ms.

1. [(a, b), ([a, b], [a, b])] 2. [a, b, (a, b), [c, d, (c, d), [e, f, (e, f)]]]
3. ([[a, b], [c, [a, b]]], (a, d), ([c, d], b), [c, d]])

5 Discussion

We have presented a general procedure for implementing deep inference deductive systems by exploiting term rewriting features of Maude. In particular, we have presented implementations of systems KSG and BV. We have also shown that proof theoretical strategies can be implemented using the meta-level features and conditional rewriting rules of this language. We have analogously applied the ideas of this paper to other deep inference systems for linear logic (system LS) [18], and system NEL [8]. These implementations are available for download. \footnote{http://www.doc.ic.ac.uk/~ozank/maude_cos.html}
In [13], Marti-Oliet and Meseguer present a Maude implementation of linear logic as a sequent calculus system. There, in order to capture the branching at the application of multiple premise sequent calculus inference rules, they introduce an operator, called configuration, which provides a representation of the meta-level at the object-level. In deep inference deductive systems, because the meta-level merges with the object level, and hence there is no multiple premise inference rules, the deep inference implementation of linear logic does not require additional operators on top of those of linear logic.

An other aspect that distinguishes our implementation of linear logic, is due to the promotion rule. In the sequent calculus, promotion rule is defined as the inference rule on the left below, which involves a global knowledge of the context: the application of this rule requires each formula in the context of $!A$ to be checked to have the form $?B$. In the calculus of structures this rule is replaced with the rule on the right, which does not require such a global view of the formulae.

$$
\vdash A, ?B_1, \ldots, ?B_n \\
\vdash !A, ?B_1, \ldots, ?B_n
$$

$$
\frac{S[! [R, T]]}{p \downarrow S[?R, !T]}
$$

Schäfer has developed a graphical proof editor, called GraPE [15], which functions as a graphical user interface to the Maude modules discussed in this paper. This tool makes it possible to use the Maude implementations interactively: By using the GraPE tool, the user can guide the proof construction and choose between automated proof search and user-guided proof construction. Then the output derivation can be exported as LaTeX code. The GraPE tool is available online \(^4\).

In [6], Guglielmi has shown that for a class of classical tautologies called Statman’s tautologies, deep inference provides an exponential speed up in contrast to the sequent calculus proofs. The restrictions imposed by the rules discussed in this paper preserve the shortest proofs of [6]. However, proof search applications

\(^4\) \url{http://grape.sourceforge.net/}

Table 1

<table>
<thead>
<tr>
<th>System</th>
<th># states explored</th>
<th># of rewrites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. fDKSg</td>
<td>–</td>
<td>29</td>
</tr>
<tr>
<td>DKSg</td>
<td>7</td>
<td>61</td>
</tr>
<tr>
<td>KSgic</td>
<td>8</td>
<td>265</td>
</tr>
<tr>
<td>KSgic’</td>
<td>8</td>
<td>202</td>
</tr>
<tr>
<td>2. fDKSg</td>
<td>–</td>
<td>32</td>
</tr>
<tr>
<td>DKSg</td>
<td>187</td>
<td>2468</td>
</tr>
<tr>
<td>KSgic</td>
<td>18</td>
<td>265</td>
</tr>
<tr>
<td>KSgic’</td>
<td>18</td>
<td>822</td>
</tr>
<tr>
<td>3. fDKSg</td>
<td>–</td>
<td>46</td>
</tr>
<tr>
<td>DKSg</td>
<td>158</td>
<td>1150</td>
</tr>
<tr>
<td>KSgic</td>
<td>15</td>
<td>313</td>
</tr>
<tr>
<td>KSgic’</td>
<td>11</td>
<td>466</td>
</tr>
<tr>
<td>4. fDKSg</td>
<td>–</td>
<td>86</td>
</tr>
<tr>
<td>DKSg</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KSgic</td>
<td>302</td>
<td>34126</td>
</tr>
<tr>
<td>KSgic’</td>
<td>10846 (*)</td>
<td>1765578</td>
</tr>
</tbody>
</table>
of these deductive systems require further restrictions in the application of the inference rules, which is a topic of ongoing work in conjunction with an extensive comparison of these implementations and proof complexity analysis. A deep inference system for the logic of bunched implications [14] is also a potential application of the ideas above for future work. Other topics of future investigation include introducing strategies for partitioning the search space by resorting to the splitting theorem (see, e.g., [7,12]).

References